python+selenium+pytesseract识别图片验证码
itomcoil 2025-05-22 10:58 2 浏览
一、selenium截取验证码
# 私信小编01即可获取大量Python学习资源
# 私信小编01即可获取大量Python学习资源
# 私信小编01即可获取大量Python学习资源
import json
from io import BytesIO
import time
from test.testBefore.testDriver import driver
from test.util.test_pytesseract import recognize
from PIL import Image
import allure
import unittest
'''
/处理验证码
'''
# 要截图的元素
element = driver.find_element_by_xpath('//*[@id="imgVerifyCode"]')
# 坐标
x, y = element.location.values()
# 宽高
h, w = element.size.values()
# 把截图以二进制形式的数据返回
image_data = driver.get_screenshot_as_png()
# 以新图片打开返回的数据
screenshot = Image.open(BytesIO(image_data))
# 对截图进行裁剪
result = screenshot.crop((x, y, x + w, y + h))
# 显示图片
# result.show()
# 保存验证码图片
result.save('VerifyCode.png')
# 调用recognize方法识别验证码
code = recognize('VerifyCode.png')
# 输入验证码
driver.find_element_by_xpath('//*[@id="txtcode"]').send_keys(code)
'''
处理验证码/
'''
- 注意:driver是引用我自己写的文件,可以自己随便写一个。识别图片的代码单独放在util文件夹下面的,参考标题三的代码,需要时引用。以上代码定位元素都需要根据自己的项目定位元素修改。
二、安装识别环境pytesseract+Tesseract-OCR
- 如果没有输出,又不确定你的pytesseract环境是否安装好,可以用一张没有干扰的图片识别看看能不能有输出结果,以下样例在我的环境中可以直接输出识别结果8fnp
验证识别环境是否正常
- 直接使用pytesseract识别图片
- 001.png
text = pytesseract.image_to_string('./001.png')
print(text)
三、处理验证码图片
直接截图的验证码图片存在噪点或者干扰线等,直接使用pytesseract识别可能会没有输出结果,如果环境正常,但没有输出结果,那多半是因为图片没有处理好,识别不出来,可以多尝试一些处理图片的方式,以下代码处理我截图这种类似的图片效果比较好。
图片处理识别
对图片处理的过程:
图片处理过程中可以多用im.show()看看每一步处理后的图片是不是符合预期,如果效果不好调一下参数。另外在学习过程中发现有童鞋说识别不出来把图片使用cv2.resize()这个方法放大就能识别,可以参考Python中图像的缩放 resize()函数的应用
- 实际截取的图片
- 处理后的图片
- test_pytesseract.py
import pytesseract
from fnmatch import fnmatch
import cv2
import os
def clear_border(img, img_name):
'''
去除边框
'''
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
# if y ==0 or y == w -1 or y == w - 2:
if y < 2 or y > w - 2:
img[x, y] = 255
# if x == 0 or x == h - 1 or x == h - 2:
if x < 1 or x > h - 1:
img[x, y] = 255
return img
def interference_line(img, img_name):
'''
干扰线降噪
'''
h, w = img.shape[:2]
# !!!opencv矩阵点是反的
# img[1,2] 1:图片的高度,2:图片的宽度
for r in range(0, 2):
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 2:
img[x, y] = 255
return img
def interference_point(img, img_name, x=0, y=0):
"""点降噪
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
# todo 判断图片的长宽度下限
cur_pixel = img[x, y] # 当前像素点的值
height, width = img.shape[:2]
for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0: # 第一行
if x == 0: # 左上顶点,4邻域
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右上顶点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最上非顶点,6邻域
sum = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif y == width - 1: # 最下面一行
if x == 0: # 左下顶点
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右下顶点
sum = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最下非顶点,6邻域
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # y不在边界
if x == 0: # 左边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1: # 右边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # 具备9领域条件的
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0
return img
def _get_dynamic_binary_image(filedir, img_name):
'''
自适应阀值二值化
'''
filename = './' + img_name.split('.')[0] + '-binary.png'
img_name = filedir + '/' + filename
im = cv2.imread(img_name)
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
return th1
def recognize(image):
filedir = './' # 验证码路径
for file in os.listdir(filedir):
if fnmatch(file, image):
img_name = file
# 自适应阈值二值化
im = _get_dynamic_binary_image(filedir, img_name)
# # 去除边框
im = clear_border(im, img_name)
# 对图片进行干扰线降噪
im = interference_line(im, img_name)
# 对图片进行点降噪
im = interference_point(im, img_name)
filename = './' + img_name.split('.')[0] + '-interferencePoint.png' # easy_code为保存路径
cv2.imwrite(filename, im) # 保存图片
text = pytesseract.image_to_string(im, lang="eng",
config='--psm 6 digits') # config=digits只识别数字
return text
'''
--psm 参数含义
0:定向脚本监测(OSD)
1: 使用OSD自动分页
2 :自动分页,但是不使用OSD或OCR(Optical Character Recognition,光学字符识别)
3 :全自动分页,但是没有使用OSD(默认)
4 :假设可变大小的一个文本列。
5 :假设垂直对齐文本的单个统一块。
6 :假设一个统一的文本块。
7 :将图像视为单个文本行。
8 :将图像视为单个词。
9 :将图像视为圆中的单个词。
10 :将图像视为单个字符。
'''
相关推荐
- 使用opencv-Python进行图像锐化处理
-
使用OpenCV函数cv::filter2D执行一些拉普拉斯滤波以进行图像锐化使用OpenCV函数cv::distanceTransform以获得二值图像的派生(derived)表示,...
- Python-OpenCV 7. 图像二值化
-
一、介绍图像二值化(ImageBinarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。在数字图像处理中,二值图像占有非常重要的地位,图...
- OpenCV+Python裁剪图像
-
最近使用OpenCV+Python做了一个程序,功能是自动将照片中的文本部分找出来并裁剪/旋转保存为新的图片。这个功能用专业些的说法就是选择并提取感兴趣区域(ROI(RegionofInteres...
- 简单易懂的人脸识别!用PythonOpenCV实现(适合初...
-
前言:OpenCV是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV已被广泛运用在各种项目上,从谷歌街景...
- OpenCV行人检测应用方案--基于米尔全志T527开发板
-
本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV行人检测方案测试。摘自优秀创作者-小火苗一、软件环境安装1.在全志T527开发板安装OpenCVsudoap...
- 纯Python构建Web应用:Remi与 OpenCV 结合实现图像处理与展示
-
引言大家好,我是ICodeWR。在前几篇文章中,我们介绍了Remi的基础功能、多页面应用、动态更新、与Flask结合、与数据库结合、与Matplotlib结合以及与Pandas结合。...
- 【AI实战项目】基于OpenCV的“颜色识别项目”完整操作过程
-
OpenCV是一个广受欢迎且极为流行的计算机视觉库,它因其强大的功能、灵活性和开源特性而在开发者和研究者中备受青睐。学习OpenCV主要就是学习里面的计算机视觉算法。要学习这些算法的原理,知道它们适用...
- Python自动化操控术:PyAutoGUI全场景实战指南
-
一、PyAutoGUI核心武器库解析1.1鼠标操控三剑客importpyautogui#绝对坐标移动(闪电速度)pyautogui.moveTo(100,200,duration=0....
- 从零开始学python爬虫(七):selenium自动化测试框架的介绍
-
本节主要学习selenium自动化测试框架在爬虫中的应用,selenium能够大幅降低爬虫的编写难度,但是也同样会大幅降低爬虫的爬取速度。在逼不得已的情况下我们可以使用selenium进行爬虫的编写。...
- 「干货分享」推荐5个可以让你事半功倍的Python自动化脚本
-
作者:俊欣来源:关于数据分析与可视化相信大家都听说自动化流水线、自动化办公等专业术语,在尽量少的人工干预的情况下,机器就可以根据固定的程序指令来完成任务,大大提高了工作效率。今天小编来为大家介绍几个P...
- python+selenium+pytesseract识别图片验证码
-
一、selenium截取验证码#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源importjso...
- Python爬虫实战 | 利用多线程爬取 LOL 高清壁纸
-
一、背景介绍随着移动端的普及出现了很多的移动APP,应用软件也随之流行起来。最近看到英雄联盟的手游上线了,感觉还行,PC端英雄联盟可谓是爆火的游戏,不知道移动端的英雄联盟前途如何,那今天我们使用到...
- 一套真实的Python面试题,几十个题目汇总
-
1.(1)python下多线程的限制以及多进程中传递参数的方式python多线程有个全局解释器锁(globalinterpreterlock),这个锁的意思是任一时间只能有一个线程使用解释器,跟...
- 一文读透,Python暴力(BF)字符串匹配算法到 KMP 算法之间的变化
-
1.字符串匹配算法所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串。如在字符串"ABCDEFG"中查找是否存在“EF”字符串。可以把字符...
- Python实现屏幕自动截图
-
教程目录需要实现的功能:自动屏幕截图具体需求:1.支持设置截图频率和截图文件存储路径2.在存储截图时判断与前一张截图的相似度,只有屏幕发生了显著的变化才存储截图所需技术(搜索关键词):1.屏幕截...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)