百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

使用opencv-Python进行图像锐化处理

itomcoil 2025-05-22 11:00 1 浏览

使用 OpenCV 函数 cv::filter2D 执行一些拉普拉斯滤波以进行图像锐化

使用 OpenCV 函数 cv::distanceTransform 以获得二值图像的派生(derived)表示,其中每个像素的值被替换为其到最近背景像素的距离

使用 OpenCV 函数 cv::watershed 将图像中的对象与背景隔离

加载源图像并检查它是否加载没有任何问题,然后显示它:

# Load the image

parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\

Sample code showing how to segment overlapping objects using Laplacian filtering, \

in addition to Watershed and Distance Transformation')

parser.add_argument('--input', help='Path to input image.', default='cards.png')

args = parser.parse_args()

src = cv.imread(cv.samples.findFile(args.input))

if src is None:

print('Could not open or find the image:', args.input)

exit(0)

# Show source image

cv.imshow('Source Image', src)

将背景从白色更改为黑色,因为这将有助于稍后在使用距离变换(Distance Transform)期间提取更好的结果

src[np.all(src == 255, axis=2)] = 0

之后,我们将锐化(sharpen)我们的图像,以锐化前景对象(the foreground objects)的边缘。 我们将应用具有相当强过滤器的拉普拉斯(laplacian)过滤器(二阶导数的近似值):


锐化处理的主要目的是突出灰度的过度部分。由于拉普拉斯是一种微分算子,如果所使用的定义具有负的中心系数,那么必须将原图像减去经拉普拉斯变换后的图像,而不是加上它,从而得到锐化结果。----摘自《数字图像处理(第三版)》



现在我们将新的锐化源图像分别转换为灰度和二值图像(binary):

# Create binary image from source image

bw = cv.cvtColor(imgResult, cv.COLOR_BGR2GRAY)

_, bw = cv.threshold(bw, 40, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)

cv.imshow('Binary Image', bw)

我们现在准备在二值图像(binary image)上应用距离变换。 此外,我们对输出图像进行归一化,以便能够对结果进行可视化和阈值处理:


distanceTransform用法

cv.distanceTransform( src, distanceType, maskSize[, dst[, dstType]] )

src:输入图像,数据类型为CV_8U的单通道图像

dst: 输出图像,与输入图像具有相同的尺寸,数据类型为CV_8U或者CV_32F的单通道图像。

distanceType:选择计算两个像素之间距离方法的标志,其常用的距离度量方法, DIST_L1(distance = |x1-x2| + |y1-y2| 街区距离), DIST_L2 (Euclidean distance 欧几里得距离,欧式距离) 。

maskSize:距离变换掩码矩阵的大小,参数可以选择的尺寸为DIST_MASK_3(3×3)和DIST_MASK_5(5×5).


我们对 dist 图像进行阈值处理,然后执行一些形态学操作(即膨胀)以从上述图像中提取峰值:

从每个 blob 中,我们在 cv::findContours 函数的帮助下为分水岭算法创建一个种子/标记:

最后,我们可以应用分水岭算法,并将结果可视化:

之后会继续分享Python技术,欢迎大家学习交流~

原文链接:
https://blog.csdn.net/u012386311/article/details/121356798

相关推荐

使用opencv-Python进行图像锐化处理

使用OpenCV函数cv::filter2D执行一些拉普拉斯滤波以进行图像锐化使用OpenCV函数cv::distanceTransform以获得二值图像的派生(derived)表示,...

Python-OpenCV 7. 图像二值化

一、介绍图像二值化(ImageBinarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。在数字图像处理中,二值图像占有非常重要的地位,图...

OpenCV+Python裁剪图像

最近使用OpenCV+Python做了一个程序,功能是自动将照片中的文本部分找出来并裁剪/旋转保存为新的图片。这个功能用专业些的说法就是选择并提取感兴趣区域(ROI(RegionofInteres...

简单易懂的人脸识别!用PythonOpenCV实现(适合初...

前言:OpenCV是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV已被广泛运用在各种项目上,从谷歌街景...

OpenCV行人检测应用方案--基于米尔全志T527开发板

本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV行人检测方案测试。摘自优秀创作者-小火苗一、软件环境安装1.在全志T527开发板安装OpenCVsudoap...

纯Python构建Web应用:Remi与 OpenCV 结合实现图像处理与展示

引言大家好,我是ICodeWR。在前几篇文章中,我们介绍了Remi的基础功能、多页面应用、动态更新、与Flask结合、与数据库结合、与Matplotlib结合以及与Pandas结合。...

【AI实战项目】基于OpenCV的“颜色识别项目”完整操作过程

OpenCV是一个广受欢迎且极为流行的计算机视觉库,它因其强大的功能、灵活性和开源特性而在开发者和研究者中备受青睐。学习OpenCV主要就是学习里面的计算机视觉算法。要学习这些算法的原理,知道它们适用...

Python自动化操控术:PyAutoGUI全场景实战指南

一、PyAutoGUI核心武器库解析1.1鼠标操控三剑客importpyautogui#绝对坐标移动(闪电速度)pyautogui.moveTo(100,200,duration=0....

从零开始学python爬虫(七):selenium自动化测试框架的介绍

本节主要学习selenium自动化测试框架在爬虫中的应用,selenium能够大幅降低爬虫的编写难度,但是也同样会大幅降低爬虫的爬取速度。在逼不得已的情况下我们可以使用selenium进行爬虫的编写。...

「干货分享」推荐5个可以让你事半功倍的Python自动化脚本

作者:俊欣来源:关于数据分析与可视化相信大家都听说自动化流水线、自动化办公等专业术语,在尽量少的人工干预的情况下,机器就可以根据固定的程序指令来完成任务,大大提高了工作效率。今天小编来为大家介绍几个P...

python+selenium+pytesseract识别图片验证码

一、selenium截取验证码#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源importjso...

Python爬虫实战 | 利用多线程爬取 LOL 高清壁纸

一、背景介绍随着移动端的普及出现了很多的移动APP,应用软件也随之流行起来。最近看到英雄联盟的手游上线了,感觉还行,PC端英雄联盟可谓是爆火的游戏,不知道移动端的英雄联盟前途如何,那今天我们使用到...

一套真实的Python面试题,几十个题目汇总

1.(1)python下多线程的限制以及多进程中传递参数的方式python多线程有个全局解释器锁(globalinterpreterlock),这个锁的意思是任一时间只能有一个线程使用解释器,跟...

一文读透,Python暴力(BF)字符串匹配算法到 KMP 算法之间的变化

1.字符串匹配算法所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串。如在字符串"ABCDEFG"中查找是否存在“EF”字符串。可以把字符...

Python实现屏幕自动截图

教程目录需要实现的功能:自动屏幕截图具体需求:1.支持设置截图频率和截图文件存储路径2.在存储截图时判断与前一张截图的相似度,只有屏幕发生了显著的变化才存储截图所需技术(搜索关键词):1.屏幕截...