MYSQL数据同步(mysql数据同步机制)
itomcoil 2025-07-27 21:13 2 浏览
java开发工程师在实际的开发经常会需要实现两台不同机器上的MySQL数据库的数据同步,要解决这个问题不难,无非就是mysql数据库的数据同步问题。但要看你是一次性的数据同步需求,还是定时数据同步,亦或是持续性实时数据同步。
其中一次性的数据同步需求比较简单,这里主要介绍一次性的数据同步需求后的增量数据同步方案:
方案一:canal
github
简介
canal [k'nael],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费
工作原理
- canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送 dump 协议
- MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal )
- canal 解析 binary log 对象(原始为 byte 流)
下载
canal.deployer-1.1.6.tar.gz
canal.adapter-1.1.6.tar.gz
canal.admin-1.1.6.tar.gz
deployer:读取binlog,读取SQL,默认将数据放在缓存中,也可以将数据同步到MQ中
adapter:连接deployer,读取sql,同步数据到目标存储中(支持elasticsearch,hbase,kudu,rdb.tablestore)
admin:可视化页面
准备
- 对于自建 MySQL , 需要先开启 Binlog 写入功能,配置 binlog-format 为 ROW 模式,my.cnf 中配置如下
- [mysqld]
log-bin=mysql-bin # 开启 binlog
binlog-format=ROW # 选择 ROW 模式
server_id=1 # 配置 MySQL replaction 需要定义,不要和 canal 的 slaveId 重复 - 注意:针对阿里云 RDS for MySQL , 默认打开了 binlog , 并且账号默认具有 binlog dump 权限 , 不需要任何权限或者 binlog 设置,可以直接跳过这一步
- 授权 canal 链接 MySQL 账号具有作为 MySQL slave 的权限, 如果已有账户可直接 grant
- CREATE USER canal IDENTIFIED BY 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
-- GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;
FLUSH PRIVILEGES;
配置deployer
解压deployer,修改conf/example目录下的instance.properties
- 为了方便我用的是root账号
#################################################
## mysql serverId , v1.0.26+ will autoGen
# canal.instance.mysql.slaveId=0
# enable gtid use true/false
canal.instance.gtidon=false
# position info
canal.instance.master.address=192.168.2.4:3306
canal.instance.master.journal.name=
canal.instance.master.position=
canal.instance.master.timestamp=
canal.instance.master.gtid=
# rds oss binlog
canal.instance.rds.accesskey=
canal.instance.rds.secretkey=
canal.instance.rds.instanceId=
# table meta tsdb info
canal.instance.tsdb.enable=true
#canal.instance.tsdb.url=jdbc:mysql://127.0.0.1:3306/canal_tsdb
#canal.instance.tsdb.dbUsername=canal
#canal.instance.tsdb.dbPassword=canal
#canal.instance.standby.address =
#canal.instance.standby.journal.name =
#canal.instance.standby.position =
#canal.instance.standby.timestamp =
#canal.instance.standby.gtid=
# username/password
canal.instance.dbUsername=root
canal.instance.dbPassword=123456
canal.instance.connectionCharset = UTF-8
# enable druid Decrypt database password
canal.instance.enableDruid=false
#canal.instance.pwdPublicKey=MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALK4BUxdDltRRE5/zXpVEVPUgunvscYFtEip3pmLlhrWpacX7y7GCMo2/JM6LeHmiiNdH1FWgGCpUfircSwlWKUCAwEAAQ==
# table regex
canal.instance.filter.regex=.*\\..*
# table black regex
canal.instance.filter.black.regex=mysql\\.slave_.*
# table field filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.field=test1.t_product:id/subject/keywords,test2.t_company:id/name/contact/ch
# table field black filter(format: schema1.tableName1:field1/field2,schema2.tableName2:field1/field2)
#canal.instance.filter.black.field=test1.t_product:subject/product_image,test2.t_company:id/name/contact/ch
# mq config
canal.mq.topic=example
# dynamic topic route by schema or table regex
#canal.mq.dynamicTopic=mytest1.user,topic2:mytest2\\..*,.*\\..*
canal.mq.partition=0
# hash partition config
#canal.mq.enableDynamicQueuePartition=false
#canal.mq.partitionsNum=3
#canal.mq.dynamicTopicPartitionNum=test.*:4,mycanal:6
#canal.mq.partitionHash=test.table:id^name,.*\\..*
#################################################
- 启动deployer
sh bin/startup.sh
- 查看log下的日志文件,查看是否启动成功
配置adapter
解压adapter,进入到conf目录
- 修改bootstrap.yml
- canal:
manager:
jdbc:
url: jdbc:mysql://192.168.2.4:3306/canal_manager?useUnicode=true&characterEncoding=UTF-8
username: root
password: 123456 - 创建canal_manager的schama
- 执行sql语句
- canal_manager.sql
- 修改application.yml
- server:
port: 8081
spring:
jackson:
date-format: yyyy-MM-dd HH:mm:ss
time-zone: GMT+8
default-property-inclusion: non_null
canal.conf:
mode: tcp #tcp kafka rocketMQ rabbitMQ
flatMessage: true
zookeeperHosts:
syncBatchSize: 1000
retries: -1
timeout:
accessKey:
secretKey:
consumerProperties:
# canal tcp consumer
canal.tcp.server.host: 127.0.0.1:11111
canal.tcp.zookeeper.hosts:
canal.tcp.batch.size: 500
canal.tcp.username:
canal.tcp.password:
# kafka consumer
kafka.bootstrap.servers: 127.0.0.1:9092
kafka.enable.auto.commit: false
kafka.auto.commit.interval.ms: 1000
kafka.auto.offset.reset: latest
kafka.request.timeout.ms: 40000
kafka.session.timeout.ms: 30000
kafka.isolation.level: read_committed
kafka.max.poll.records: 1000
# rocketMQ consumer
rocketmq.namespace:
rocketmq.namesrv.addr: 127.0.0.1:9876
rocketmq.batch.size: 1000
rocketmq.enable.message.trace: false
rocketmq.customized.trace.topic:
rocketmq.access.channel:
rocketmq.subscribe.filter:
# rabbitMQ consumer
rabbitmq.host:
rabbitmq.virtual.host:
rabbitmq.username:
rabbitmq.password:
rabbitmq.resource.ownerId:
srcDataSources:
defaultDS:
url: jdbc:mysql://192.168.2.4:3307/test2?useUnicode=true
username: root
password: 123456
canalAdapters:
- instance: example # canal instance Name or mq topic name
groups:
- groupId: g1
outerAdapters:
# - name: logger
- name: rdb
key: mysql1
properties:
jdbc.driverClassName: com.mysql.jdbc.Driver
jdbc.url: jdbc:mysql://192.168.2.4:3307/test1?useUnicode=true
jdbc.username: root
jdbc.password: 123456
druid.stat.enable: false
druid.stat.slowSqlMillis: 1000
- name: rdb
key: mysql2
properties:
jdbc.driverClassName: com.mysql.jdbc.Driver
jdbc.url: jdbc:mysql://192.168.2.4:3307/test3?useUnicode=true
jdbc.username: root
jdbc.password: 123456
druid.stat.enable: false
druid.stat.slowSqlMillis: 1000
# - name: rdb
# key: oracle1
# properties:
# jdbc.driverClassName: oracle.jdbc.OracleDriver
# jdbc.url: jdbc:oracle:thin:@localhost:49161:XE
# jdbc.username: mytest
# jdbc.password: m121212
# - name: rdb
# key: postgres1
# properties:
# jdbc.driverClassName: org.postgresql.Driver
# jdbc.url: jdbc:postgresql://localhost:5432/postgres
# jdbc.username: postgres
# jdbc.password: 121212
# threads: 1
# commitSize: 3000
# - name: hbase
# properties:
# hbase.zookeeper.quorum: 127.0.0.1
# hbase.zookeeper.property.clientPort: 2181
# zookeeper.znode.parent: /hbase
# - name: es
# hosts: 127.0.0.1:9300 # 127.0.0.1:9200 for rest mode
# properties:
# mode: transport # or rest
# # security.auth: test:123456 # only used for rest mode
# cluster.name: elasticsearch
# - name: kudu
# key: kudu
# properties:
# kudu.master.address: 127.0.0.1 # ',' split multi address
# - name: phoenix
# key: phoenix
# properties:
# jdbc.driverClassName: org.apache.phoenix.jdbc.PhoenixDriver
# jdbc.url: jdbc:phoenix:127.0.0.1:2181:/hbase/db
# jdbc.username:
# jdbc.password: - 在目标库创建号需要同步的schama
- 继续进入到conf/rdb目录,创建适配器(以test1,test3db为例,创建test1.yml,test3.yml)
- test1.yml
# dataSourceKey: defaultDS
# destination: example
# groupId: g1
# outerAdapterKey: mysql1
# concurrent: true
# dbMapping:
# database: test1
# table: user
# targetTable: mytest2.user
# targetPk:
# id: id
# # mapAll: true
# targetColumns:
# id:
# name:
# role_id:
# c_time:
# test1:
# etlCondition: "where c_time>={}"
# commitBatch: 3000 # 批量提交的大小
## Mirror schema synchronize config
dataSourceKey: defaultDS
destination: example
groupId: g1
outerAdapterKey: mysql1
concurrent: true
dbMapping:
mirrorDb: true
database: test1
##############################
test3.yml
## Mirror schema synchronize config
dataSourceKey: defaultDS
destination: example
groupId: g1
outerAdapterKey: mysql2
concurrent: true
dbMapping:
mirrorDb: true
database: test3 - 启动
- bin/startup.sh
- 查看log下的日志
验证
在源数据库创建表,新增,更新,删除等操作,查看目标数据库是否更新
方案二:datax
github
简介
DataX 是阿里云 DataWorks数据集成 的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS, databend 等各种异构数据源之间高效的数据同步功能。
下载
Source code(tar.gz)
配置
解压后,修改在job下创建mysql_2_mysql.json
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "root",
"password": "111111",
"column": [ "id", "name","content" ,"createdate"],
"splitPk": "id",
"connection": [
{
"table": [
"t_user_info"
],
"jdbcUrl": [
"jdbc:mysql://192.168.2.4:3306/sourcedb"
]
}
]
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"writeMode": "insert",
"username": "root",
"password": "111111",
"column": [ "id", "name","content","createdate"],
"session": [
"set session sql_mode='ANSI'"
],
"preSql": [
"delete from t_user_info"
],
"connection": [
{
"jdbcUrl": "jdbc:mysql://192.168.2.4:3307/targetdb",
"table": [
"t_user_info"
]
}
]
}
}
}
]
}
}
- 需要在目标库创建对应的表
启动
python .\bin\datax.py .\job\mysql-2-mysql.json
问题
- 同步需要写sql或者配置好字段全量更新
- 增量更新需要表具有create_time,update_time字段
方案三:存储SQL
python 爬虫,将sql写到中间件存储(s3,kafka,redis,es)等中,然后写一个程序读取存储,将数据写到目标数据库中
对比
对比项 | canal | datax | 存储SQL |
对源数据库的影响 | 需要开启bin_log,占用磁盘,有会影响数据库性能 | 查询源数据库(select),数据量越大对数据库的影响越大 | 没有影响 |
是否需要在目标数据库创建schama | 是 | 是 | 是 |
是否需要在目标数据库创建表 | 否 | 是 | 是 |
增量更新 | 启动适配器就会增量更新 | 需要表字段有create_time,update_time这种时间戳标记 | 启动同步程序就行 |
怎么操作 | 需要启动,deployer和adapter程序 | 需要启动datax程序 | 需要改造爬虫程序,还需要创建一个同步程序 |
相关推荐
- 字符串可以这样加索引,你知吗?(字符串怎么加)
-
相信大多数小伙伴跟咔咔一样,给字符串添加索引从未设置过长度,今天就来聊聊如何正确的给字符串加索引。一、如何建立索引大多数系统都会存在用户表,并且系统初始设计使用了手机号码登录的。这是产品提出了一个需求...
- MySQL高频函数Top10!数据分析效率翻倍,拒绝无效加班!
-
引言:为什么你的SQL代码又臭又长?“同事3行代码搞定的事,你写了30行?”“每次处理日期、字符串都抓狂,疯狂百度?”——不是你不努力,而是没掌握这些高频函数!本文精炼8年数据库开发经验,总结出10个...
- 上亿数据怎么玩深度分页?兼容MySQL + ES + MongoDB
-
推荐学习阿里P8MySQL,基础/索引/锁/日志/调优都不误,一锅深扒端给你“吃”完这本Java性能调优实战,MySQL+JVM+Tomcat等问题一键全消面试题&真实经历面试题:在数据量很大的情...
- Hive如何比较两张表所有字段的一致性
-
前言随着MySQL技术发展,通过垂直或水平拆分能够支持相当大的数据量,目前很多公司把SQLServer、Oracledb或其他数据库迁移到MySQL上,迁移数据量很大(数据库已经水平拆分成很多Sha...
- MySql:函数盘点(mysql函数用法)
-
一、MySQL函数1、数学函数常用的有:(1)ABS()绝对值(2)CEILING()大于等于我的最小整数(天花板)(3)FLOOR()小于等于我的最大整数(地板)(4)RAND()返回0~1...
- mysql的截取函数用法详解(mysql截取字符串函数的sql语句)
-
substring()函数测试数据准备:用法:以下语法是mysql自动提示的1:substirng(str,pos):从指定位置开始截取一直到数据完成str:需要截取的字段的pos:开始截取的位置。从...
- mysql拼接函数讲解及配合截取函数使用
-
在上一篇我们讲解了mysql的截取函数用法。本篇我们将讲解mysql的拼接函数以及配合截取函数实现当留言数字过多省略显示的场景。concat函数:把参数连成一个长字符串并返回(任何参数是NULL时返回...
- MySQL实现字段分割(一行转多行)(mysql 分割)
-
先看一下数据结构,我这里字段比较少,只弄了最重要的部分根据我们上次学到的LEFT()函数进行分组SELECTLEFT(provinces,6),COUNT(1)FROM`region_map_c...
- MySQL(143)如何优化分页查询?(mysql高效分页查询)
-
优化分页查询是提升数据库性能和用户体验的重要手段。特别是在处理大数据集时,分页查询的效率对系统性能有显著影响。以下是优化分页查询的详细步骤和代码示例。一、传统分页查询传统的分页查询使用OFFSET...
- Go语言实现连接MySql基础操作(golang mysql orm)
-
在Go中,可以使用database/sql包来连接和操作MySQL数据库。以下是一个简单的示例程序,它演示了如何连接MySQL数据库并执行查询操作:packagemainimpo...
- MySQL 如何巧妙解决 Too many connections 报错?
-
1.背景在日常的MySQL运维中,难免会出现参数设置不合理,导致MySQL在使用过程中出现各种各样的问题。今天,我们就来讲解一下MySQL运维中一种常见的问题:最大连接数设置不合理,一旦...
- MYSQL数据同步(mysql数据同步机制)
-
java开发工程师在实际的开发经常会需要实现两台不同机器上的MySQL数据库的数据同步,要解决这个问题不难,无非就是mysql数据库的数据同步问题。但要看你是一次性的数据同步需求,还是定时数据同步,亦...
- Go语言MySQL的简单应用(go mysql prepare)
-
要在Go中处理MySQL数据库,可以使用第三方包,例如go-sql-driver/mysql。以下是一个简单的示例代码:packagemainimport("dat...
- 最简洁详细的SSM框架整合(ssm框架完整的功能流程)
-
创建项目和SSM框架整合思路一、创建项目因为后面会配置springMVC,所以用IDEA的web骨架创建一个maven项目。创建项目目录如下,同时,项目需要的包和文件已手动创建好了:项目目录上图中,a...
- 部署canal server 1.1.5,消费mysql信息,订阅测试
-
一、CanalServer的核心架构CanalServer是阿里巴巴开源的MySQLbinlog增量订阅与消费组件,其架构设计围绕高可用、高性能、低延迟三大目标构建,主要包含以下核心...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)