百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

pandas 之 groupby pandas是什么意思

itomcoil 2024-12-28 13:34 16 浏览

groupby 的 MutilIndex

df.reset_index()

df.index.get_level_values('abc') / df.index.get_level_values(0)


准备

这个博客是用 Jupyter Notebook 写的, 如果你没有用过也不影响阅读哦. 这里只要电脑装了python和pandas就好, 我们会先读入一个数据集.

# 读入一个数据集, 我使用了美国警方击毙数据集.
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.style.use('ggplot')
path = 'https://raw.githubusercontent.com/HoijanLai/dataset/master/PoliceKillingsUS.csv'
data = pd.read_csv(path, encoding ='latin1')
data.sample(3)

name date race age signs_of_mental_illness flee 683 Tyrone Holman 09/09/15 B 37.0 True Not fleeing 1941 Michael Alan Altice 25/12/16 W 61.0 True Not fleeing 652 Manuel Soriano 27/08/15 H 29.0 False Not fleeing


什么是group by

groupby就是按xx分组, 它也确实是用来实现这样功能的. 比如, 将一个数据集按A进行分组, 效果是这样

我们尝试使用groupby来尝试实现这样的功能, 不过我们不用A列, 我们将用我们数据集里面的"种族"尝试分组:

data.groupby('race')

<pandas.core.groupby.DataFrameGroupBy object at 0x104fa2208>

这里我们得到了一个叫DataFrameGroupBy的东西, 虽然 pandas 不让我们直接看它长啥样, 但是你将它想象成上面那幅分组后的图(我手绘的)是完全没有问题的.

这篇稿主要介绍如何鼓捣这个DataFrameGroupBy, 这个DataFrameGroupBy主要的功能能是允许你在不额外写循环的情况下, 快速对每一组数据进行操作


基本操作

最基本的就是组内计数, 求和, 求均值, 求方差, 求blablabla... 比如, 要求被不同种族内被击毙人员年龄的均值:

data.groupby('race')['age'].mean()

race A 36.605263 B 31.635468 H 32.995157 N 30.451613 O 33.071429 W 40.046980 Name: age, dtype: float64

上面我们求得了各个种族中被击毙的人员的平均年龄, 得到的是一个Series, 每一行对应了每一组的mean, 除此之外你还可以换成std, median, min, max这些基本的统计数据

上面age是连续属性, 我们还可以操作离散属性, 比如对不同取值的计数: .value_counts() 以下尝试求不同种族内, 是否有精神异常迹象的分别有多少人

data.groupby('race')['signs_of_mental_illness'].value_counts()

race signs_of_mental_illness A False 29 True 10 B False 523 True 95 H False 338 True 85 N False 23 True 8 O False 21 True 7 W False 819 True 382 Name: signs_of_mental_illness, dtype: int64

注: 这时, 组内操作的结果不是单个值, 是一个序列, 我们可以用.unstack()将它展开

data.groupby('race')['signs_of_mental_illness'].value_counts().unstack()

signs_of_mental_illness False True race A 29 10 B 523 95 H 338 85 N 23 8 O 21 7 W 819 382

方法总结

首先通过groupby得到DataFrameGroupBy对象, 比如data.groupby('race') 然后选择需要研究的列, 比如['age'], 这样我们就得到了一个SeriesGroupby, 它代表每一个组都有一个Series 对SeriesGroupby进行操作, 比如.mean(), 相当于对每个组的Series求均值

注: 如果不选列, 那么第三步的操作会遍历所有列, pandas会对能成功操作的列进行操作, 最后返回的一个由操作成功的列组成的DataFrame

更多基本操作

选择一个组 不细讲啦, 我自己觉得跟筛选数据差不多


可视化

这是我非常喜欢Groupby的一个地方, 它能够帮你很轻松地分组画图, 免去手写每个组的遍历的烦恼, 还能为你每个组分好颜色.

场景一: 不同种族中, 逃逸方式分别是如何分布的?

(属性A的不同分组中, 离散属性B的情况是怎么样的 )

  • 一种传统做法是: 遍历每个组 然后筛选不同组的数据 逐个子集画条形图 (或者其他表示)
races = np.sort(data['race'].dropna().unique())
fig, axes = plt.subplots(1, len(races), figsize=(24, 4), sharey=True)
for ax, race in zip(axes, races):
    data[data['race']==race]['flee'].value_counts().sort_index().plot(kind='bar', ax=ax, title=race)

还不错, 但是使用Groupby能让我们直接免去循环, 而且不需要烦人的筛选, 一行就完美搞定

data.groupby('race')['flee'].value_counts().unstack().plot(kind='bar', figsize=(20, 4))

方法总结

首先, 得到分组操作后的结果data.groupby('race')['flee'].value_counts() 这里有一个之前介绍的.unstack操作, 这会让你得到一个DateFrame, 然后调用条形图, pandas就会遍历每一个组(unstack后为每一行), 然后作各组的条形图

场景二: 按不同逃逸类型分组, 组内的年龄分布是如何的?

(属性A的不同分组中, 连续属性B的情况是怎么样的)

data.groupby('flee')['age'].plot(kind='kde', legend=True, figsize=(20, 5))

方法总结

这里data.groupby('flee')['age']是一个SeriesGroupby对象, 顾名思义, 就是每一个组都有一个Series. 因为划分了不同逃逸类型的组, 每一组包含了组内的年龄数据, 所以直接plot相当于遍历了每一个逃逸类型, 然后分别画分布图.

pandas 会为不同组的作图分配颜色, 非常方便


高级操作

场景三: 有时我们需要对组内不同列采取不同的操作

比如说, 我们按flee分组, 但是我们需要对每一组中的年龄求中位数, 对是否有精神问题求占比

这时我们可以这样做

data.groupby('race').agg({'age': np.median, 'signs_of_mental_illness': np.mean})

age signs_of_mental_illness race A 35.0 0.256410 B 30.0 0.153722 H 31.0 0.200946 N 29.0 0.258065 O 29.5 0.250000 W 38.0 0.318068

方法总结 这里我们操作的data.groupby('race')是一个DataFrameGroupby, 也就是说, 每一组都有一个DataFrame

我们把对这些DataFrame的操作计划写成了了一个字典{'age': np.median, 'signs_of_mental_illness': np.mean}, 然后进行agg, (aggragate, 合计)

然后我们得到了一个DataFrame, 每行对应一个组, 没列对应各组DataFrame的合计信息, 比如第二行第一列表示, 黑人被击毙者中, 年龄的中位数是30, 第二行第二列表示, 黑人被击毙者中, 有精神疾病表现的占15%

场景四: 我们需要同时求不同组内, 年龄的均值, 中位数, 方差

data.groupby('flee')['age'].agg([np.mean, np.median, np.std])

mean median std flee Car 33.911765 33.0 11.174234 Foot 30.972222 30.0 10.193900 Not fleeing 38.334753 36.0 13.527702 Other 33.239130 33.0 9.932043

方法总结

现在我们对一个SeriesGroupby同时进行了多种操作. 相当于同时得到了这三行的结果:

data.groupby('flee')['age'].mean()
data.groupby('flee')['age'].median()
data.groupby('flee')['age'].std()

所以这其实是基本操作部分的进阶

场景五: 结合场景三和场景四可以吗?

答案是肯定的, 请看

data.groupby('flee').agg({'age': [np.median, np.mean], 'signs_of_mental_illness': np.mean})

age signs_of_mental_illness_mean flee median mean mean Car 33.0 33.911765 0.114286 Foot 30.0 30.972222 0.115646 Not fleeing 36.0 38.334753 0.319174 Other 33.0 33.239130 0.072917

但是这里有一个问题, 这个列名分了很多层级, 我们可以进行重命名:

agg_df = data.groupby('flee').agg({'age': [np.median, np.mean], 'signs_of_mental_illness': np.mean})
agg_df.columns = ['_'.join(col).strip() for col in agg_df.columns.values]
agg_df

age_median age_mean signs_of_mental_illness_mean flee Car 33.0 33.911765 0.114286 Foot 30.0 30.972222 0.115646 Not fleeing 36.0 38.334753 0.319174 Other 33.0 33.239130 0.072917

方法总结 注意这里agg接受的不一定是np.mean这些函数, 你还可以进行自定义函数哦


总结

Groupby 可以简单总结为 split, apply, combine, 也就是说:

  • split : 先将数据按一个属性分组 (得到 DataFrameGroupby / SeriesGroupby )
  • apply : 对每一组数据进行操作 (取平均 取中值 取方差 或 自定义函数)
  • combine: 将操作后的结果结合起来 (得到一个DataFrame 或 Series 或可视化图像)

希望看完本文你已经对groupby的使用有清晰的印象, 并充满信心, 如果你需要更细致的微操作, 多属性Groupby等, 可以进一步阅读文档

https://www.jianshu.com/p/42f1d2909bb6

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html

相关推荐

PS小技巧 调整命令,让人物肤色变得更加白皙 #后期修图

我们来看一下如何去将人物的皮肤变得更加的白皙。·首先选中图层,Ctrl键加J键复制一层。·打开这里的属性面板,选择快速操作删除背景,这样就会将人物进行单独的抠取。·接下来在上方去添加一个黑白调整图层,...

把人物肤色提亮的方法和技巧

PS后期调白肤色提亮照片的方法。一白遮百丑,所以对于Photoshop后期来说把人物肤色调白是一项非常重要的任务。就拿这张素材图片来说,这张素材图片人脸的肤色主要偏红、偏黄,也不够白皙,该怎样对它进行...

《Photoshop教程》把美女图片调成清爽色彩及润肤技巧

关注PS精品教程,每天不断更新~~室内人物图片一般会偏暗,人物脸部、肤色及背景会出现一些杂点。处理之前需要认真的给人物磨皮及美白,然后再整体润色。最终效果原图一、用修补工具及图章工具简单去除大一点的黑...

PS后期对皮肤进行美白的技巧

PS后期进行皮肤美白的技巧。PS后期对皮肤进行美白的技巧:·打开素材图片之后直接复制原图。·接下来直接点击上方的图像,选择应用图像命令。·在通道这里直接选择红通道,混合这里直接选择柔光,然后点击确定。...

493 [PS调色]调模特通透肤色

效果对比:效果图吧:1、光位图:2、拍摄参数:·快门:160;光圈:8;ISO:1003、步骤分解图:用曲线调整图层调出基本色调。用可选颜色调整图层调整红色、黄色、白色和灰色4种颜色的混合比例。用色彩...

先选肤色再涂面部,卡戴珊的摄影师透露:为明星拍完照后怎么修图

据英国媒体12月17日报道,真人秀明星金·卡戴珊终于承认,她把女儿小北P进了家族的圣诞贺卡,怪不得粉丝们都表示这张贺卡照得非常失败。上周,这位39岁的女星遭到了一些粉丝针对这张照片的批评,她于当地时间...

如何在PS中运用曲线复制另一张照片的色调

怎样把另一张作品的外观感觉,套用到自己的照片上?单靠肉眼来猜,可能很不容易,而来自BenSecret的教学,关键是在PS使用了两个工具,让你可以准确比较两张照片的曝光、色调与饱和度,方便你调整及复制...

PS在LAB模式下调出水嫩肤色的美女

本PS教程主要使用Photoshop使用LAB模式调出水嫩肤色的美女,教程调色比较独特。作者比较注重图片高光部分的颜色,增加质感及肤色调红润等都是在高光区域完成。尤其在Lab模式下,用高光选区调色后图...

在Photoshop图像后期处理中如何将人物皮肤处理得白皙通透

我们在人像后期处理中,需要将人物皮肤处理的白皙通透,处理方法很多,大多数都喜欢使用曲线、磨皮等进行调整,可以达到亮但是不透,最终效果往往不是很好,今天就教大家一种如何将任务皮肤处理得白皙通透,希望能帮...

PS调色自学教程:宝宝照片快速调通透,简单实用!

PS调色自学教程:宝宝照片快速调通透。·首先复制图层,然后选择进入ACR滤镜,选择曲线锁定照片的亮部,也就高光位置,其他部位补亮一点,尤其是阴影的部位补亮多一些,让画面的层次均匀一点。·然后回到基本项...

【干货】如何利用PS进行人物美化

人物图像美化在Photoshop中非常常用,Photoshop作为一款功能强大的图像处理软件,不仅可以对人像进行基本的调色、美化和修复等处理,还可以改变人物的线条和幅度,如调整脸部器官和脸型的大小、调...

教大家一种可以快速把肤色处理均匀的方法@抖音短视频

快速把肤色处理均匀的方法。今天教大家一种可以快速把肤色处理均匀的方法。像这张照片整体肤色走紫红色,但是局部偏黄缘处理起来非常的麻烦。其实我们只需要新建空白图层,图层混合模式更改为颜色,再选择画笔工具把...

PS调色教程 利用RAW调出干净通透的肤色

要么不发,要么干货。后期教程来噜~用RAW调出干净通透的肤色。这次终于不会原片比PS后好看了吧。如果你依然这么觉得,请不要残忍的告诉我这个事实,泪谢TAT)附送拍摄花絮,感谢各位的支持更多风格请关注m...

photoshop后期皮肤变白的技巧

PS后期皮肤变白的技巧。1.PS后期让皮肤变白的方法有很多种,接下来教你一种非常简单容易上手的方法。2.打开素材图片之后,直接在小太极下拉框的位置添加一个纯色调整图层,颜色设置一个纯白色,点击...

Photoshop调出人物的淡雅粉嫩肤色教程

本教程主要使用Photoshop调出人物的淡雅粉嫩肤色教程,最终的效果非常的通透迷人,下面让我们一起来学习.出自:86ps效果图:原图:1、打开原图复制一层。2、用Topaz滤镜磨皮(点此下载)。3、...