百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

pandas入门教程 - 第十课: pandas的组操作

itomcoil 2024-12-28 13:34 33 浏览

Pandas 组操作简介

Pandas 的组操作(Group By)是数据处理中的核心功能之一,它允许我们对数据进行分组并对每个组进行操作,从而实现复杂的数据分析和处理任务。

分组操作的基础

在 Pandas 中,分组操作通常通过 groupby 方法实现。这个方法可以根据一个或多个列对数据进行分组。

单一列分组

当我们只想根据一列进行分组时,可以直接传递该列作为参数给 groupby 方法。

import pandas as pd

# 创建一个示例 DataFrame
data = {
    'Category': ['A', 'A', 'B', 'B', 'C', 'C'],
    'Value': [10, 20, 30, 40, 30, 20]
}

df = pd.DataFrame(data)

# 根据 'Category' 列进行分组
grouped = df.groupby('Category')

# 查看分组后的结果
print(grouped)

多列分组

如果我们想根据多个列进行分组,可以将这些列作为列表传递给 groupby 方法。

# 根据 'Category' 和 'Year' 列进行分组
grouped_multi = df.groupby(['Category', 'Value'])

# 查看分组后的结果
print(grouped_multi)

分组后的操作

分组操作完成后,我们可以对每个组进行各种操作,如聚合、转换和排序等。

聚合函数

聚合函数可以对数据进行汇总计算,如求和、平均值、最大值和最小值等。

# 计算每个类别的总和
total_per_category = grouped['Value'].sum()

# 计算每个类别的平均值
mean_per_category = grouped['Value'].mean()

# 查看结果
print(total_per_category)
print(mean_per_category)

转换函数

转换函数可以对数据进行转换操作,如计数、排序等。

# 计算每个类别的记录数量
count_per_category = grouped['Value'].count()

# 查看结果
print(count_per_category)

过滤和排序

我们还可以对分组后的数据进行过滤和排序操作。

# 过滤出 'Category' 为 'A' 的数据
filtered_category_a = grouped['Value'][grouped['Category'] == 'A']

# 对 'Category' 为 'A' 的数据进行降序排序
sorted_category_a = filtered_category_a.sort_values(ascending=False)

# 查看结果
print(sorted_category_a)

拆分、应用和组合(Split-Apply-Combine)

Split-Apply-Combine 是 Pandas 的一种强大的数据处理范式,它可以帮助我们更有效地进行数据分析。

拆分(Split)

拆分操作是指将数据集按照某些键分成多个子集。在 Pandas 中,这通常通过 groupby 方法实现。

# 根据 'Category' 列进行分组
grouped = df.groupby('Category')

# 拆分数据集
grouped_list = list(grouped)

# 查看拆分后的分组
for category, group in grouped_list:
    print(category)
    print(group)
A
  Category  Value
0        A     10
1        A     20
B
  Category  Value
2        B     30
3        B     40
C
  Category  Value
4        C     30
5        C     20

应用(Apply)

应用操作是指对每个分组应用一个函数,并收集结果。在 Pandas 中,这通常通过 apply 方法实现。

# 对每个分组应用自定义函数
def custom_function(group):
    return group['Value'].sum()

# 应用自定义函数
result = grouped.apply(custom_function)

# 查看结果
print(result)
Category
A    30
B    70
C    50
dtype: int64

组合(Combine)

组合操作是指将多个子集数据合并成一个整体。在 Pandas 中,这通常通过 concat 方法实现。

# 假设我们有多个分组的数据,并将它们存储在列表中
grouped_list = [grouped_1, grouped_2, grouped_3]

# 使用 concat 方法将它们合并
combined_df = pd.concat(grouped_list)

# 查看合并后的数据框
print(combined_df)

实践案例

在本节中,我们将通过一个实际案例来练习分组操作。我们将使用一个包含销售数据的 DataFrame,学习如何进行数据的分组和聚合分析,以了解不同产品类别的销售情况。

数据导入

首先,我们需要导入销售数据。

import pandas as pd

# 加载销售数据
df = pd.read_csv('sales_data.csv')

# 查看数据框的前几行
print(df.head())
  Product      Sales
0       A  83.612440
1       B  83.743698
2       C  88.536823
3       D  88.427858
4       E  81.554607

分组和聚合分析

接下来,我们将根据产品类别对销售数据进行分组,并计算每个类别的总销售额和平均销售额。

# 根据产品类别进行分组
grouped_by_product = df.groupby('Product')

# 计算总销售额
total_sales_by_product = grouped_by_product['Sales'].sum()

# 计算平均销售额
average_sales_by_product = grouped_by_product['Sales'].mean()

# 查看结果
print(total_sales_by_product)
print(average_sales_by_product)
  Product      Sales
0       A  83.612440
1       B  83.743698
2       C  88.536823
3       D  88.427858
4       E  81.554607
Product
A    522.415076
B    437.234533
C    446.066535
D    782.328957
E     81.554607
Name: Sales, dtype: float64
Product
A    87.069179
B    87.446907
C    89.213307
D    86.925440
E    81.554607
Name: Sales, dtype: float64

可视化分析

为了更直观地理解销售数据,我们可以使用 matplotlib 库来绘制图表。

import matplotlib.pyplot as plt

# 绘制总销售额的柱状图
plt.bar(total_sales_by_product.index, total_sales_by_product.values, color='blue')
plt.xlabel('Product')
plt.ylabel('Total Sales')
plt.title('Total Sales by Product Category')
plt.xticks(rotation=90)  # 旋转 x 轴刻度标签以提高可读性
plt.show()

# 绘制平均销售额的折线图
plt.plot(average_sales_by_product.index, average_sales_by_product.values, color='red')
plt.xlabel('Product')
plt.ylabel('Average Sales')
plt.title('Average Sales by Product Category')
plt.xticks(rotation=90)  # 旋转 x 轴刻度标签以提高可读性
plt.show()




总结

在本课程中,我们学习了 Pandas 的组操作功能,包括如何使用 groupby 方法对数据进行分组,如何使用聚合函数对数据进行汇总计算,以及如何使用拆分-应用-组合范式对数据进行复杂的分析。通过实践案例,我们学会了如何应用这些知识来解决实际问题,如分析销售数据。掌握这些技能将极大地提高我们在数据处理和分析方面的能力。

相关推荐

Python编程实现求解高次方程_python求次幂
Python编程实现求解高次方程_python求次幂

#头条创作挑战赛#编程求解一元多次方程,一般情况下对于高次方程我们只求出近似解,较少的情况可以得到精确解。这里给出两种经典的方法,一种是牛顿迭代法,它是求解方程根的有效方法,通过若干次迭代(重复执行部分代码,每次使变量的当前值被计算出的新值...

2025-10-23 03:58 itomcoil

python常用得内置函数解析——sorted()函数

接下来我们详细解析Python中非常重要的内置函数sorted()1.函数定义sorted()函数用于对任何可迭代对象进行排序,并返回一个新的排序后的列表。语法:sorted(iterabl...

Python入门学习教程:第 6 章 列表

6.1什么是列表?在Python中,列表(List)是一种用于存储多个元素的有序集合,它是最常用的数据结构之一。列表中的元素可以是不同的数据类型,如整数、字符串、浮点数,甚至可以是另一个列表。列...

Python之函数进阶-函数加强(上)_python怎么用函数

一.递归函数递归是一种编程技术,其中函数调用自身以解决问题。递归函数需要有一个或多个终止条件,以防止无限递归。递归可以用于解决许多问题,例如排序、搜索、解析语法等。递归的优点是代码简洁、易于理解,并...

Python内置函数range_python内置函数int的作用

range类型表示不可变的数字序列,通常用于在for循环中循环指定的次数。range(stop)range(start,stop[,step])range构造器的参数必须为整数(可以是内...

python常用得内置函数解析——abs()函数

大家号这两天主要是几个常用得内置函数详解详细解析一下Python中非常常用的内置函数abs()。1.函数定义abs(x)是Python的一个内置函数,用于返回一个数的绝对值。参数:x...

如何在Python中获取数字的绝对值?

Python有两种获取数字绝对值的方法:内置abs()函数返回绝对值。math.fabs()函数还返回浮点绝对值。abs()函数获取绝对值内置abs()函数返回绝对值,要使用该函数,只需直接调用:a...

贪心算法变种及Python模板_贪心算法几个经典例子python

贪心算法是一种在每一步选择中都采取当前状态下最优的选择,从而希望导致结果是全局最优的算法策略。以下是贪心算法的主要变种、对应的模板和解决的问题特点。1.区间调度问题问题特点需要从一组区间中选择最大数...

Python倒车请注意!负步长range的10个高能用法,让代码效率翻倍

你是否曾遇到过需要倒着处理数据的情况?面对时间序列、日志文件或者矩阵操作,传统的遍历方式往往捉襟见肘。今天我们就来揭秘Python中那个被低估的功能——range的负步长操作,让你的代码优雅反转!一、...

Python中while循环详解_python怎么while循环

Python中的`while`循环是一种基于条件判断的重复执行结构,适用于不确定循环次数但明确终止条件的场景。以下是详细解析:---###一、基本语法```pythonwhile条件表达式:循环体...

简单的python-核心篇-面向对象编程

在Python中,类本身也是对象,这被称为"元类"。这种设计让Python的面向对象编程具有极大的灵活性。classMyClass:"""一个简单的...

简单的python-python3中的不变的元组

golang中没有内置的元组类型,但是多值返回的处理结果模拟了元组的味道。因此,在golang中"元组”只是一个将多个值(可能是同类型的,也可能是不同类型的)绑定在一起的一种便利方法,通常,也...

python中必须掌握的20个核心函数——sorted()函数

sorted()是Python的内置函数,用于对可迭代对象进行排序,返回一个新的排序后的列表,不修改原始对象。一、sorted()的基本用法1.1方法签名sorted(iterable,*,ke...

12 个 Python 高级技巧,让你的代码瞬间清晰、高效

在日常的编程工作中,我们常常追求代码的精简、优雅和高效。你可能已经熟练掌握了列表推导式(listcomprehensions)、f-string和枚举(enumerate)等常用技巧,但有时仍会觉...

Python的10个进阶技巧:写出更快、更省内存、更优雅的代码

在Python的世界里,我们总是在追求效率和可读性的完美平衡。你不需要一个数百行的新框架来让你的代码变得优雅而快速。事实上,真正能带来巨大提升的,往往是那些看似微小、却拥有高杠杆作用的技巧。这些技巧能...