百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

机器学习中集成学习( Bagging, Boosting和Stacking)简介和示例

itomcoil 2024-12-28 13:34 23 浏览


什么是集成方法?

集成方法是通过建立一组独立的机器学习模型,组合多个模型的预测对类标签进行预测的方法。这种策略组合可以减少总误差,包括减少方差和偏差,或者提高单个模型的性能。

在这里,我使用来自Kaggle的“红酒质量”数据(https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009)来演示集成方法。“Quality”是我们的目标变量。我唯一要做的预处理就是将10分制的评分转换为3个分类级别,“ 1”,“ 2”和“ 3”分别代表“好”,“中”和“差”。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
#import data
wine = pd.read_csv('winequality.csv')
#preprocess data
def getquality(x):
    if x > 6.5:
        return 1
    elif x < 4.5:
        return 3
    else:
        return 2
wine['quality'] = wine['quality'].apply(getquality)
#seperate features and target variable
x = wine.drop(['quality'], axis=1)
y = wine['quality']
#split into train and test data
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=1)
#copy code to deal with SettingWithCopyWarn
xtrain = xtrain.copy()
xtest = xtest.copy()
ytrain = ytrain.copy()
ytest = ytest.copy()

机器学习模型1:

默认的DecisionTreeClassifier()的准确性得分是0.815625。

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(xtrain, ytrain)
model_pred = model.predict(xtest)
#see prediction result
print('Accuracy Score: {0:6f}'.format(model.score(xtest, ytest)))

Bagging

所谓的bootstrapping aggregation,其思想是在随机不同版本的训练数据上训练许多基础模型。每个模型拥有一票表决权,并且无??论预测准确度如何,都做相同的处理,然后对预测变量进行汇总以得出最终结果。在大多数情况下,Bagging后结果的方差会变小。例如,随机森林是Bagging方法中最著名的模型,它将决策树与Bagging理念结合在一起。

我们通常在每一轮中使用bootstrapping方法(替换样本)从原始样本集中提取训练子集。因此,在训练集中,有些样本可能被多次使用,而有些样本可能永远不会被使用。这使得训练子集是独立的。

模型的选择没有限制,我们根据所面临的问题采用不同的分类器或回归器。每个预测模型都可以由训练集并行生成。它们同等重要,所占比重相同。在合并输出后,我们对分类问题使用多数投票,对回归问题使用平均投票。

机器学习模型2:

我们没有建立随机森林分类器,而是将决策树与BaggingClassifier()结合使用,得到了0.856250的准确率。

from sklearn.ensemble import BaggingClassifier
model = BaggingClassifier(base_estimator=clf, random_state=0)
model.fit(xtrain, ytrain)
model_pred = model.predict(xtest)
#see prediction result
print('Accuracy Score: {0:6f}'.format(model.score(xtest, ytest)))

Boosting

boosting和bagging之间最本质的区别在于,boosting并不会同等的对待基础模型,而是通过连续的测试和筛选来选择“精英”。表现良好的模型对投票的权重更大,而表现较差的模型的权重更小,然后将所有的投票组合得到最终结果。在大多数情况下,boosting后结果的偏差会变小。例如,Adaboost和Gradient boost是boosting方法中最常用的模型。

一般情况下,每一轮的训练集保持不变,但在boosting轮次结束时,模型中每个样本在训练集中的分布可能会发生变化。这是一个迭代过程,它更关注(增加权重)以前错误分类的记录,而忽略(减少权重)前一轮中正确的记录。换句话说,它可以将弱学习者的表现提高到强学习者的水平。

与bagging不同,每个预测模型只能顺序生成,因为后一个模型的参数需要前一个模型的结果。汇总模型后,我们对分类问题使用多数投票,对回归问题进行平均。

机器学习模型3:

GradientBoostingClassifier()给我们的准确率评分为0.846875,也高于没有boost的准确率。

from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(random_state=0)
model.fit(xtrain, ytrain)
model_pred = model.predict(xtest)
#see prediction result
print(‘Accuracy Score: {0:6f}’.format(model.score(xtest, ytest)))

Stacking

对基础模型(弱学习者)的结果进行平均或投票相对简单,但是学习误差可能很大,因此创建了另一种学习方法(Stacking)。Stacking策略不是对模型的结果进行简单的逻辑处理,而是在模型外增加一层。

因此,我们总共有两层模型,即通过预测训练集建立第一层模型,然后将训练集预测模型的结果作为输入,再对第二层新模型进行训练,得到最终结果。基本上,Stacking可以减少方差或bagging/boosting的偏差。

机器学习模型4:

StackingClassifier()的准确率得分为0.875000。虽然与第1层模型相比,它不是最高的,但它成功地提高了决策树和KNN的性能。

from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
#build two layer models using stacking
layer1 = [DecisionTreeClassifier(), KNeighborsClassifier(), RandomForestClassifier(random_state=0)]
layer2 = GradientBoostingClassifier(random_state=0)
model = StackingClassifier(classifiers=layer1, meta_classifier=layer2)
model.fit(xtrain, ytrain)
model_pred = model.predict(xtest)
#see prediction result
print(‘Accuracy Score: {0:6f}’.format(model.score(xtest, ytest)))

最后

从混淆矩阵中,我们发现对于所有模型而言,葡萄酒的中等级别(第二行)确实很难预测。但是,葡萄酒的差等级(第三行)更容易识别。

尽管我们能够在不理解场景背后的情况下构建模型,但是仍然建议您了解每个机器学习模型是如何工作的。因为只有对一个模型有了更多的了解,我们才能有效地使用它,并解释它是如何正确地做出预测的。

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...