盘点Pandas 的100个常用函数 pandas函数库
itomcoil 2024-12-28 13:35 17 浏览
作者 | 刘顺祥
来源 | 数据分析1480
这一期将分享我认为比较常规的100个实用函数,这些函数大致可以分为六类,分别是统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。
统计汇总函数
数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。
import pandas as pd import numpy as np x = pd.Series(np.random.normal(2,3,1000)) y = 3*x + 10 + pd.Series(np.random.normal(1,2,1000)) # 计算x与y的相关系数 print(x.corr(y)) # 计算y的偏度 print(y.skew()) # 计算y的统计描述值 print(x.describe()) z = pd.Series(['A','B','C']).sample(n = 1000, replace = True) # 重新修改z的行索引 z.index = range(1000) # 按照z分组,统计y的组内平均值 y.groupby(by = z).aggregate(np.mean)
# 统计z中个元素的频次 print(z.value_counts()) a = pd.Series([1,5,10,15,25,30]) # 计算a中各元素的累计百分比 print(a.cumsum() / a.cumsum()[a.size - 1])
数据清洗函数
同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。
x = pd.Series([10,13,np.nan,17,28,19,33,np.nan,27]) #检验序列中是否存在缺失值 print(x.hasnans) # 将缺失值填充为平均值 print(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill())
income = pd.Series(['12500元','8000元','8500元','15000元','9000元']) # 将收入转换为整型 print(income.str[:-1].astype(int)) gender = pd.Series(['男','女','女','女','男','女']) # 性别因子化处理 print(gender.factorize()) house = pd.Series(['大宁金茂府 | 3室2厅 | 158.32平米 | 南 | 精装', '昌里花园 | 2室2厅 | 104.73平米 | 南 | 精装', '纺大小区 | 3室1厅 | 68.38平米 | 南 | 简装']) # 取出二手房的面积,并转换为浮点型 house.str.split('|').str[2].str.strip().str[:-2].astype(float)
数据筛选
数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。
np.random.seed(1234) x = pd.Series(np.random.randint(10,20,10)) # 筛选出16以上的元素 print(x.loc[x > 16]) print(x.compress(x > 16)) # 筛选出13~16之间的元素 print(x[x.between(13,16)]) # 取出最大的三个元素 print(x.nlargest(3)) y = pd.Series(['ID:1 name:张三 age:24 income:13500', 'ID:2 name:李四 age:27 income:25000', 'ID:3 name:王二 age:21 income:8000']) # 取出年龄,并转换为整数 print(y.str.findall('age:(d+)').str[0].astype(int))
绘图与元素级函数
np.random.seed(123) import matplotlib.pyplot as plt x = pd.Series(np.random.normal(10,3,1000)) # 绘制x直方图 x.hist() # 显示图形 plt.show() # 绘制x的箱线图 x.plot(kind='box') plt.show() installs = pd.Series(['1280万','6.7亿','2488万','1892万','9877','9877万','1.2亿']) # 将安装量统一更改为“万”的单位 def transform(x): if x.find('亿') != -1: res = float(x[:-1])*10000 elif x.find('万') != -1: res = float(x[:-1]) else: res = float(x)/10000 return res installs.apply(transform)
时间序列函数
其他函数
import numpy as np import pandas as pd np.random.seed(112) x = pd.Series(np.random.randint(8,18,6)) print(x) # 对x中的元素做一阶差分 print(x.diff()) # 对x中的元素做降序处理 print(x.sort_values(ascending = False)) y = pd.Series(np.random.randint(8,16,100)) # 将y中的元素做排重处理,并转换为列表对象 y.unique().tolist()
搜索进入我们的CDA小程序,解锁更多新鲜资讯和优质内容,还有很多专业课程和试听课,不要错过哟!
相关推荐
- 第十章:优化设计与自动化工作流(优化设计是)
-
以下重点讲解优化设计、自动化脚本编写以及与其他工具(如Python、优化算法库)的集成,提升CFD仿真的工程应用效率。目标:掌握参数化扫描、优化算法集成和批量任务管理,实现从单次模拟到自动化设计探索的...
- 安装python语言,运行你的第一行代码
-
#01安装Python访问Python官方(https://www.python.org/),下载并安装最新版本的Python。确保安装过程中勾选“Addpython.exetoPAT...
- Python安装(python安装的库在哪个文件夹)
-
Windows系统1.安装python1.1下载Python安装包打开官方网站:https://www.python.org/downloads/点击"DownloadPython3.1...
- 比pip快100倍的Python包安装工具(python2.7.5安装pip)
-
简介uv是一款开源的Python包安装工具,GitHubstar高达56k,以性能极快著称,具有以下特性(官方英文原文):Asingletooltoreplacepip,pip-tool...
- 【跟着豆包AI学Python】Python环境的安装,编写第一个程序
-
最近几年,人工智能越来越走进人们的日常生活,国内各大公司都推出了自己的AI助手,例如:阿里旗下的通义千问、百度旗下的文心一言、腾讯的腾讯元宝、深度求索的deepseek等,元宝就是字节跳动公司推出的A...
- Python3+ 变量命名全攻略:PEP8 规范 + 官方禁忌...
-
Python3+变量命名规则与约定详解一、官方命名规则(必须遵守)1.合法字符集变量名只能包含:大小写字母(a-z,A-Z)数字(0-9)下划线(_)2.禁止数字开头合法:user_age,...
- Python程序打包为EXE的全面指南:从入门到精通
-
引言在Python开发中,将程序打包成可执行文件(EXE)是分发应用程序的重要环节。通过打包,我们可以创建独立的可执行文件,让没有安装Python环境的用户也能运行我们的程序。本篇文章将详细介绍如何使...
- 别再纸上谈兵了!手把手教你安装GraalVM,让你的代码瞬间起飞!
-
各位老铁们,是不是每次看到我吹嘘GraalVM的各种神迹,心里都痒痒的?想让自己的Java程序秒启动?想让Python脚本跑得比平时快好几倍?想体验一把多语言无缝协作的快感?但一想到要下载、配置、敲命...
- 纠结坏了!从 Python 3.8 升级到 3.14 真有必要吗?
-
点赞、收藏、加关注,下次找我不迷路"我电脑里装的Python3.8,现在都出3.14了,要不要赶紧升级啊?会不会像手机系统更新一样,越升级越卡?"相信很多刚入门的朋友都有类...
- win10下python3.13.3最新版本解释器的下载与安装
-
一、python3.13.3下载官方下载地址:https://www.python.org/1.浏览器访问https://www.python.org/这个地址,进入python的网站,点击【Dowl...
- Python简介与开发环境搭建详细教程
-
1.1Python简介与开发环境搭建详细教程一、Python语言简介1.Python的核心特点2.Python的应用领域表1.1Python主要应用领域领域典型应用常用库Web开发网站后端D...
- python开发小游戏案例(python游戏开发入门经典教程)
-
#头条创作挑战赛#假设你正在开发一个小型游戏,需要实现角色移动、障碍物生成、碰撞检测等功能。你可以使用Python和Pygame库来开发这个游戏。输入以下命令来安装Pygame:pipinstall...
- Python编程:从入门到实践 第十一、二 章 武装飞船
-
假设我们有一个名为AnonymousSurvey的类,用于收集匿名调查的答案。该类包含以下方法:classAnonymousSurvey:def__init__(self,questi...
- 「Python系列」python几个重要模块的安装(二)
-
一、python的pygame的安装:安装地址:https://www.cnblogs.com/charliedaifu/p/9938542.htmlpyagme包下载地址:https://down...
- python如何绘制消消乐小游戏(python字母消消乐)
-
要开发一款消消乐的小游戏界面,我们可以使用Python的pygame库。首先需要安装pygame库,然后创建一个窗口,加载游戏素材,处理游戏逻辑,以及绘制游戏界面。以下是一个简单的消消乐游戏界面实现:...
- 一周热门
- 最近发表
-
- 第十章:优化设计与自动化工作流(优化设计是)
- 安装python语言,运行你的第一行代码
- Python安装(python安装的库在哪个文件夹)
- 比pip快100倍的Python包安装工具(python2.7.5安装pip)
- 【跟着豆包AI学Python】Python环境的安装,编写第一个程序
- Python3+ 变量命名全攻略:PEP8 规范 + 官方禁忌...
- Python程序打包为EXE的全面指南:从入门到精通
- 别再纸上谈兵了!手把手教你安装GraalVM,让你的代码瞬间起飞!
- 纠结坏了!从 Python 3.8 升级到 3.14 真有必要吗?
- win10下python3.13.3最新版本解释器的下载与安装
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)