百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

面向初学者的 10 条实用机器学习技巧

itomcoil 2024-12-28 13:35 22 浏览

这 10 条建议让你省去很多麻烦。它们专注于实践,而不仅仅是理论。为了使其实用,我将向您展示如何使用UCI 机器学习存储库中的真实数据集来构建和训练您的第一个模型。

让我们开始吧。

1.从简单开始:先建立小模型

暂时忘掉深度学习吧。从小型、简单的模型开始至关重要。如果你不能解释线性回归或决策树,你就还没准备好学习神经网络。这些简单的模型对于小型数据集非常有效,并为理解基础知识奠定了坚实的基础。

示例:使用线性回归预测房价

我们正在使用波士顿住房数据集。目标是根据犯罪率、房间数量和税率等特征预测房价。

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
columns = ["CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "MEDV"]
data = pd.read_csv(url, sep='\s+', names=columns)

# Split data
X = data.drop(columns=["MEDV"])
y = data["MEDV"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Linear Regression
model = LinearRegression()
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
print(f"Mean Squared Error: {mean_squared_error(y_test, y_pred):.2f}")

这里发生了什么?

  1. 我们加载住房数据集(无多余内容)。
  2. 将其分成训练数据集和测试数据集(80/20)。
  3. 训练线性回归模型来预测价格。
  4. 使用均方误差(MSE)进行评估。

结果如何? 你可以在 5 分钟内解释这个基本模型。

2. 在训练模型之前了解你的数据

原始数据中充满了故事。不要跳过探索数据集、可视化关系和识别可能破坏模型性能的奇怪异常值的步骤。

示例:探索葡萄酒数据集中的关系

我们使用的是葡萄酒数据集。该数据集根据 13 个特征将葡萄酒分为三类。

import seaborn as sns
import matplotlib.pyplot as plt
# Load the Wine Dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"
columns = ["Class"] + [f"Feature_{i}" for i in range(1, 14)]
data = pd.read_csv(url, header=None, names=columns)
# Visualize relationships
sns.pairplot(data, hue="Class", diag_kind="kde")
plt.show()

这里发生了什么?

  1. 该数据集有 3 个葡萄酒类别和 13 个数值特征。
  2. 配对图可视化了特征之间的关系。
  3. 您很快就会看到哪些特点区分了葡萄酒类别(一些模式会脱颖而出)。

关键见解:机器学习首先是理解数据,而不是模型。

3.清理和预处理数据

请记住,脏数据等于坏模型。你的算法不是读心者。缺失值、非数字数据和不一致的比例都会对你的结果产生负面影响。因此,在训练模型之前,请清理和预处理你的数据。

示例:清理乳腺癌数据集

乳腺癌数据集包含一些以?表示的无效条目。

import numpy as np
# Load the dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
data = pd.read_csv(url, header=None)
# Replace '?' with NaN
data.replace("?", np.nan, inplace=True)
# Drop rows with missing values
data = data.dropna()
print(data.head())

这里发生了什么?

  1. 用 NaN 替换无效条目(?)。
  2. 删除缺少值的行。
  3. 清理后的数据已准备好进行模型训练。

教训:垃圾进,垃圾出。清理你的数据。

4. 在做其他事情之前先拆分数据

如果你用训练模型时所用的数据来评估模型,那你就是在自欺欺人!将数据分成训练数据集和测试数据集。

示例:训练-测试拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f"Train size: {X_train.shape}, Test size: {X_test.shape}")

为什么重要:在未知数据上测试模型可以模拟真实世界的性能。

5. 训练之前扩展数据

机器学习模型不知道“年龄”和“收入”的衡量标准不同。缩放特征,使所有值都具有同等重要性。

示例:标准化特征

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

6. 交叉验证:以正确的方式测试你的模型

单一的训练测试分割是不够的。使用交叉验证在多个数据上测试您的模型。我们将在这里使用不同的数据集。这是来自 UCI ML 的钞票认证数据集。您会注意到交叉验证准确率与准确率有何不同。更低!使用较低的一个。如果您的准确率给您更高的百分比,并且您使用它,那么您就错了!

示例:使用随机森林进行交叉验证

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
model = RandomForestClassifier()
scores = cross_val_score(model, X, y, cv=5)
print(f"Cross-Validation Accuracy: {scores.mean():.2f}")

7. 选择正确的功能

并非所有特征都重要。使用特征选择技术来挑选最重要的特征。

from sklearn.feature_selection import SelectKBest, f_classif
X_new = SelectKBest(f_classif, k=3).fit_transform(X, y)
print(f"Selected Features Shape: {X_new.shape}")

8. 正则化以避免过度拟合

当你的模型在训练数据上表现良好但在未知数据上表现不佳时,就会发生过度拟合。正则化有助于解决这个问题。

示例:Ridge Regression

from sklearn.linear_model import Ridge
ridge = Ridge(alpha=1.0)
ridge.fit(X_train_scaled, y_train)
print(f"Model Coefficients: {ridge.coef_}")

9.调整超参数

模型具有需要调整的设置(超参数)以获得更好的结果。使用网格搜索找到最佳设置。

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
params = {'kernel': ['linear', 'rbf'], 'C': [0.1, 1, 10]}
grid = GridSearchCV(SVC(), params, cv=5)
grid.fit(X_train_scaled, y_train)
print(f"Best Parameters: {grid.best_params_}")

10.用正确的指标评估你的模型

准确度还不够。查看准确率、召回率和 F1 分数等指标来衡量模型的性能。

from sklearn.metrics import classification_report
y_pred = model.predict(X_test_scaled)
print("Classification Report:")
print(classification_report(y_test, y_pred))

相关推荐

第十章:优化设计与自动化工作流(优化设计是)

以下重点讲解优化设计、自动化脚本编写以及与其他工具(如Python、优化算法库)的集成,提升CFD仿真的工程应用效率。目标:掌握参数化扫描、优化算法集成和批量任务管理,实现从单次模拟到自动化设计探索的...

安装python语言,运行你的第一行代码

#01安装Python访问Python官方(https://www.python.org/),下载并安装最新版本的Python。确保安装过程中勾选“Addpython.exetoPAT...

Python安装(python安装的库在哪个文件夹)

Windows系统1.安装python1.1下载Python安装包打开官方网站:https://www.python.org/downloads/点击"DownloadPython3.1...

比pip快100倍的Python包安装工具(python2.7.5安装pip)

简介uv是一款开源的Python包安装工具,GitHubstar高达56k,以性能极快著称,具有以下特性(官方英文原文):Asingletooltoreplacepip,pip-tool...

【跟着豆包AI学Python】Python环境的安装,编写第一个程序

最近几年,人工智能越来越走进人们的日常生活,国内各大公司都推出了自己的AI助手,例如:阿里旗下的通义千问、百度旗下的文心一言、腾讯的腾讯元宝、深度求索的deepseek等,元宝就是字节跳动公司推出的A...

Python3+ 变量命名全攻略:PEP8 规范 + 官方禁忌...

Python3+变量命名规则与约定详解一、官方命名规则(必须遵守)1.合法字符集变量名只能包含:大小写字母(a-z,A-Z)数字(0-9)下划线(_)2.禁止数字开头合法:user_age,...

Python程序打包为EXE的全面指南:从入门到精通

引言在Python开发中,将程序打包成可执行文件(EXE)是分发应用程序的重要环节。通过打包,我们可以创建独立的可执行文件,让没有安装Python环境的用户也能运行我们的程序。本篇文章将详细介绍如何使...

别再纸上谈兵了!手把手教你安装GraalVM,让你的代码瞬间起飞!

各位老铁们,是不是每次看到我吹嘘GraalVM的各种神迹,心里都痒痒的?想让自己的Java程序秒启动?想让Python脚本跑得比平时快好几倍?想体验一把多语言无缝协作的快感?但一想到要下载、配置、敲命...

纠结坏了!从 Python 3.8 升级到 3.14 真有必要吗?

点赞、收藏、加关注,下次找我不迷路"我电脑里装的Python3.8,现在都出3.14了,要不要赶紧升级啊?会不会像手机系统更新一样,越升级越卡?"相信很多刚入门的朋友都有类...

win10下python3.13.3最新版本解释器的下载与安装

一、python3.13.3下载官方下载地址:https://www.python.org/1.浏览器访问https://www.python.org/这个地址,进入python的网站,点击【Dowl...

Python简介与开发环境搭建详细教程

1.1Python简介与开发环境搭建详细教程一、Python语言简介1.Python的核心特点2.Python的应用领域表1.1Python主要应用领域领域典型应用常用库Web开发网站后端D...

python开发小游戏案例(python游戏开发入门经典教程)

#头条创作挑战赛#假设你正在开发一个小型游戏,需要实现角色移动、障碍物生成、碰撞检测等功能。你可以使用Python和Pygame库来开发这个游戏。输入以下命令来安装Pygame:pipinstall...

Python编程:从入门到实践 第十一、二 章 武装飞船

假设我们有一个名为AnonymousSurvey的类,用于收集匿名调查的答案。该类包含以下方法:classAnonymousSurvey:def__init__(self,questi...

「Python系列」python几个重要模块的安装(二)

一、python的pygame的安装:安装地址:https://www.cnblogs.com/charliedaifu/p/9938542.htmlpyagme包下载地址:https://down...

python如何绘制消消乐小游戏(python字母消消乐)

要开发一款消消乐的小游戏界面,我们可以使用Python的pygame库。首先需要安装pygame库,然后创建一个窗口,加载游戏素材,处理游戏逻辑,以及绘制游戏界面。以下是一个简单的消消乐游戏界面实现:...