从未如此简单,15分钟就上手的神经网络构建方法
itomcoil 2024-12-28 13:36 26 浏览
全文共2392字,预计学习时长11分钟
人工智能,深度学习,这些词是不是听起来就很高大上,充满了神秘气息?仿佛是只对数学博士开放的高级领域?
错啦!在B站已经变成学习网站的今天,还有什么样的教程是网上找不到的呢?深度学习从未如此好上手,至少实操部分是这样。
假如你只是了解人工神经网络基础理论,却从未踏足如何编写,跟着本文一起试试吧。你将会对如何在PyTorch 库中执行人工神经网络运算,以预测原先未见的数据有一个基本的了解。
这篇文章最多10分钟就能读完;如果要跟着代码一步步操作的话,只要已经安装了必要的库,那么也只需15分钟。相信我,它并不难。
长话短说,快开始吧!
导入语句和数据集
在这个简单的范例中将用到几个库:
· Pandas:用于数据加载和处理
· Matplotlib: 用于数据可视化处理
· PyTorch: 用于模型训练
· Scikit-learn: 用于拆分训练集和测试集
如果仅仅是想复制粘贴的话,以下几条导入语句可供参考:
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
至于数据集,Iris数据集可以在这个URL上找到。下面演示如何把它直接导入
Pandas:
iris = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv')
iris.head()
前几行如下图所示:
现在需要将 Name列中鸢尾花的品种名称更改或者重映射为分类值。——也就是0、1、2。以下是步骤说明:
mappings = {
'Iris-setosa': 0,
'Iris-versicolor': 1,
'Iris-virginica': 2
}iris['Name'] = iris['Name'].apply(lambda x: mappings[x])
执行上述代码得到的DataFrame如下:
这恭喜你,你已经成功地迈出了第一步!
拆分训练集和测试集
在此环节,将使用 Scikit-Learn库拆分训练集和测试集。随后, 将拆分过的数据由 Numpy arrays 转换为PyTorchtensors。
首先,需要将Iris 数据集划分为“特征”和“ 标签集” ——或者是x和y。Name列是因变量而其余的则是“特征”(或者说是自变量)。
接下来笔者也将使用随机种子,所以可以直接复制下面的结果。代码如下:
X = iris.drop('Name', axis=1).values
y = iris['Name'].valuesX_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=42)X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)
如果从 X_train 开始检查前三行,会得到如下结果:
从 y_train开始则得到如下结果:
地基已经打好,下一环节将正式开始搭建神经网络。
定义神经网络模型
模型的架构很简单。重头戏在于神经网络的架构:
1.输入层 (4个输入特征(即X所含特征的数量),16个输出特征(随机))
2.全连接层 (16个输入特征(即输入层中输出特征的数量),12个输出特征(随机))
3.输出层(12个输入特征(即全连接层中输出特征的数量),3个输出特征(即不同品种的数量)
大致就是这样。除此之外还将使用ReLU 作为激活函数。下面展示如何在代码里执行这个激活函数。
class ANN(nn.Module):
def __init__(self):
super().__init__()
self.fc1 =nn.Linear(in_features=4, out_features=16)
self.fc2 =nn.Linear(in_features=16, out_features=12)
self.output =nn.Linear(in_features=12, out_features=3)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.output(x)
return x
PyTorch使用的面向对象声明模型的方式非常直观。在构造函数中,需定义所有层及其架构,若使用forward(),则需定义正向传播。
接着创建一个模型实例,并验证其架构是否与上文所指的架构相匹配:
model = ANN()
model
在训练模型之前,需注明以下几点:
· 评价标准:主要使用 CrossEntropyLoss来计算损失
· 优化器:使用学习率为0.01的Adam 优化算法
下面展示如何在代码中执行CrossEntropyLoss和Adam :
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
令人期盼已久的环节终于来啦——模型训练!
模型训练
这部分同样相当简单。模型训练将进行100轮, 持续追踪时间和损失。每10轮就向控制台输出一次当前状态——以指出目前所处的轮次和当前的损失。
代码如下:
%%timeepochs = 100
loss_arr = []for i in range(epochs):
y_hat = model.forward(X_train)
loss = criterion(y_hat, y_train)
loss_arr.append(loss)
if i % 10 == 0:
print(f'Epoch: {i} Loss: {loss}')
optimizer.zero_grad()
loss.backward()
optimizer.step()
好奇最后三行是干嘛用的吗?答案很简单——反向传播——权重和偏置的更新使模型能真正地“学习”。
以下是上述代码的运行结果:
进度很快——但不要掉以轻心。
如果对纯数字真的不感冒,下图是损失曲线的可视化图(x轴为轮次编号,y轴为损失):
模型已经训练完毕,现在该干嘛呢?当然是模型评估。需要以某种方式在原先未见的数据上对这个模型进行评估。
模型评估
在评估过程中,欲以某种方式持续追踪模型做出的预测。需要迭代 X_test并进行预测,然后将预测结果与实际值进行比较。
这里将使用 torch.no_grad(),因为只是评估而已——无需更新权重和偏置。
总而言之,代码如下:
preds = []with torch.no_grad():
for val in X_test:
y_hat = model.forward(val)
preds.append(y_hat.argmax().item())
现在预测结果被存储在 preds阵列。可以用下列三个值构建一个Pandas DataFrame。
· Y:实际值
· YHat: 预测值
· Correct:对角线,对角线的值为1表示Y和YHat相匹配,值为0则表示不匹配
代码如下:
df = pd.DataFrame({'Y': y_test, 'YHat':preds})df['Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Y'],df['YHat'])]
df 的前五行如下图所示:
下一个问题是,实际该如何计算精确度呢?
很简单——只需计算 Correct列的和再除以 df的长度:
df['Correct'].sum() / len(df)>>> 1.0
此模型对原先未见数据的准确率为100%。但需注意这完全是因为Iris数据集非常易于归类,并不意味着对于Iris数据集来说,神经网络就是最好的算法。NN对于这类问题来讲有点大材小用,不过这都是以后讨论的话题了。
这可能是你写过最简单的神经网络,有着完美简洁的数据集、没有缺失值、层次最少、还有神经元!本文没有什么高级深奥的东西,相信你一定能够掌握它。
留言点赞关注
我们一起分享AI学习与发展的干货
如转载,请后台留言,遵守转载规范
相关推荐
- PS小技巧 调整命令,让人物肤色变得更加白皙 #后期修图
-
我们来看一下如何去将人物的皮肤变得更加的白皙。·首先选中图层,Ctrl键加J键复制一层。·打开这里的属性面板,选择快速操作删除背景,这样就会将人物进行单独的抠取。·接下来在上方去添加一个黑白调整图层,...
- 把人物肤色提亮的方法和技巧
-
PS后期调白肤色提亮照片的方法。一白遮百丑,所以对于Photoshop后期来说把人物肤色调白是一项非常重要的任务。就拿这张素材图片来说,这张素材图片人脸的肤色主要偏红、偏黄,也不够白皙,该怎样对它进行...
- 《Photoshop教程》把美女图片调成清爽色彩及润肤技巧
-
关注PS精品教程,每天不断更新~~室内人物图片一般会偏暗,人物脸部、肤色及背景会出现一些杂点。处理之前需要认真的给人物磨皮及美白,然后再整体润色。最终效果原图一、用修补工具及图章工具简单去除大一点的黑...
- PS后期对皮肤进行美白的技巧
-
PS后期进行皮肤美白的技巧。PS后期对皮肤进行美白的技巧:·打开素材图片之后直接复制原图。·接下来直接点击上方的图像,选择应用图像命令。·在通道这里直接选择红通道,混合这里直接选择柔光,然后点击确定。...
- 493 [PS调色]调模特通透肤色
-
效果对比:效果图吧:1、光位图:2、拍摄参数:·快门:160;光圈:8;ISO:1003、步骤分解图:用曲线调整图层调出基本色调。用可选颜色调整图层调整红色、黄色、白色和灰色4种颜色的混合比例。用色彩...
- 先选肤色再涂面部,卡戴珊的摄影师透露:为明星拍完照后怎么修图
-
据英国媒体12月17日报道,真人秀明星金·卡戴珊终于承认,她把女儿小北P进了家族的圣诞贺卡,怪不得粉丝们都表示这张贺卡照得非常失败。上周,这位39岁的女星遭到了一些粉丝针对这张照片的批评,她于当地时间...
- 如何在PS中运用曲线复制另一张照片的色调
-
怎样把另一张作品的外观感觉,套用到自己的照片上?单靠肉眼来猜,可能很不容易,而来自BenSecret的教学,关键是在PS使用了两个工具,让你可以准确比较两张照片的曝光、色调与饱和度,方便你调整及复制...
- PS在LAB模式下调出水嫩肤色的美女
-
本PS教程主要使用Photoshop使用LAB模式调出水嫩肤色的美女,教程调色比较独特。作者比较注重图片高光部分的颜色,增加质感及肤色调红润等都是在高光区域完成。尤其在Lab模式下,用高光选区调色后图...
- 在Photoshop图像后期处理中如何将人物皮肤处理得白皙通透
-
我们在人像后期处理中,需要将人物皮肤处理的白皙通透,处理方法很多,大多数都喜欢使用曲线、磨皮等进行调整,可以达到亮但是不透,最终效果往往不是很好,今天就教大家一种如何将任务皮肤处理得白皙通透,希望能帮...
- PS调色自学教程:宝宝照片快速调通透,简单实用!
-
PS调色自学教程:宝宝照片快速调通透。·首先复制图层,然后选择进入ACR滤镜,选择曲线锁定照片的亮部,也就高光位置,其他部位补亮一点,尤其是阴影的部位补亮多一些,让画面的层次均匀一点。·然后回到基本项...
- 【干货】如何利用PS进行人物美化
-
人物图像美化在Photoshop中非常常用,Photoshop作为一款功能强大的图像处理软件,不仅可以对人像进行基本的调色、美化和修复等处理,还可以改变人物的线条和幅度,如调整脸部器官和脸型的大小、调...
- 教大家一种可以快速把肤色处理均匀的方法@抖音短视频
-
快速把肤色处理均匀的方法。今天教大家一种可以快速把肤色处理均匀的方法。像这张照片整体肤色走紫红色,但是局部偏黄缘处理起来非常的麻烦。其实我们只需要新建空白图层,图层混合模式更改为颜色,再选择画笔工具把...
- PS调色教程 利用RAW调出干净通透的肤色
-
要么不发,要么干货。后期教程来噜~用RAW调出干净通透的肤色。这次终于不会原片比PS后好看了吧。如果你依然这么觉得,请不要残忍的告诉我这个事实,泪谢TAT)附送拍摄花絮,感谢各位的支持更多风格请关注m...
- photoshop后期皮肤变白的技巧
-
PS后期皮肤变白的技巧。1.PS后期让皮肤变白的方法有很多种,接下来教你一种非常简单容易上手的方法。2.打开素材图片之后,直接在小太极下拉框的位置添加一个纯色调整图层,颜色设置一个纯白色,点击...
- Photoshop调出人物的淡雅粉嫩肤色教程
-
本教程主要使用Photoshop调出人物的淡雅粉嫩肤色教程,最终的效果非常的通透迷人,下面让我们一起来学习.出自:86ps效果图:原图:1、打开原图复制一层。2、用Topaz滤镜磨皮(点此下载)。3、...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)