可视化运行Python的神器Jupyter Notebook
itomcoil 2025-01-01 20:52 39 浏览
简介
如果我们想要运行Python,通常有两种方式,第一种方式就是在Python或者IPython的解释器环境中进行交互式运行,还有一种方式就是程序员最喜欢的编写.py文件,在文件中编写python代码,然后运行。
如果我们想写一篇关于Python的文章,文章里面有代码,还希望代码能够在当前页面运行,可不可以做到呢?
可以的,那就是使用我们今天要介绍的Jupyter Notebook。
Jupyter Notebook
Jupyter项目是从Ipython项目中分出去的,在Ipython3.x之前,他们两个是在一起发布的。在Ipython4.x之后,Jupyter作为一个单独的项目进行开发和管理。因为Jupyter不仅仅可以运行Python程序,它还可以执行其他流程编程语言的运行。
Jupyter Notebook包括三个部分,第一个部分是一个web应用程序,提供交互式界面,可以在交互式界面中运行相应的代码。
上图是NoteBook的交互界面,我们可以对文档进行编辑,运行等操作。
主要的功能如下:
- 在浏览器中进行代码编辑,自动语法突出显示,缩进和制表符完成/自检功能。
- 从浏览器执行代码的能力,并将计算结果附加到生成它们的代码上。
- 使用诸如HTML,LaTeX,PNG,SVG等富媒体表示来显示计算结果。例如,可以内嵌包含matplotlib库渲染的具有出版质量的图形。
- 使用Markdown标记语言在浏览器中对富文本进行的编辑(可以为代码提供注释)不仅限于纯文本。
- 使用LaTeX轻松在markdown单元中包含数学符号的能力,并由MathJax本地呈现。
第二个部分就是NoteBook的文档了,这个文档存储了要运行的代码和一些描述信息。一般这个文档是以.ipynb的后缀进行存储的。
notebook文档是以json的形式存储的,并用base64进行编码。使用json的好处就是可以在不同的服务器中方便的进行数据的交互。
Notebook documents中除了可运行的代码文件,还可以存储说明等解释性内容,从而将代码和解释内容完美结合,尤其适合做学习笔记使用。
笔记本可以通过nbconvert命令导出为多种静态格式,包括HTML,reStructuredText,LaTeX,PDF等多种格式。
另外文档还可以方便的在网络上进行共享。
第三个部分就是代码运行的核心Kernels,通过不同的Kernels搭配,notebook可以支持运行多种程序。比如:Python,java,go,R,ruby,nodejs等等。
这些Kernels和notebook之间是以Json的形式通过MQ来进行通信的。
启动notebook server
有了文档之后,如果我们想要运行文档,需要启动notebook server。
jupyter notebook
默认情况下会开启下面的URL: http://127.0.0.1:8888
启动的时候还可指定要打开的.ipynb文件:
jupyter notebook my_notebook.ipynb
具体的notebook界面的操作这里就不多介绍了,基本上和普通的编译器差不多。大家可以自行探索。
notebook document 的结构
notebook中包含了多个cells,每个cell中包含了多行文本输入字段,可以通过Shift-Enter 或者工具栏中的播放按钮来执行其中的代码。
这里的cell有三种类型,分别是code cells,markdown cells和raw cells。
code cells
代码单元允许您编辑和编写新代码,并突出显示完整的语法和制表符。 您使用的编程语言取决于内核,默认内核(IPython)运行Python代码。
执行代码单元时,它包含的代码将发送到与笔记本关联的内核。 然后,从该计算返回的结果将在笔记本中显示为单元格的输出。 输出不仅限于文本,还有许多其他可能的输出形式,包括matplotlib图形和HTML表格(例如,在pandas数据分析包中使用的表格)。
我们看一个code cells的例子:
#%%
import numpy as np
my_arr = np.arange(1000000)
my_list = list(range(1000000))
每个单元格是以 #%% 来进行分隔的。
Ipython本身还支持多种富文本的展示格式,包括HTML,JSON,PNG,JPEG,SVG,LaTeX等。
Ipython提供了一个display方法,我们可以使用display来展示要呈现的对象:
from IPython.display import display
display(obj) 将会寻找这个对象所有可能的展示类型,并从中挑选一个最适合的类型进行展示,并将结果存储在Notebook文档里面。
如果你想展示特定类型的对象,那么可以这样:
from IPython.display import (
display_pretty, display_html, display_jpeg,
display_png, display_json, display_latex, display_svg
)
举个展示图片的例子:
from IPython.display import Image
i = Image(filename='../images/ipython_logo.png')
i
display(i)
上面的例子中i包含了一个Image对象,直接调用i即可展示,我们也可以显示的调用display(i)。
其他的富文本类型可以参考Image,使用方法都是类似的。
markdown cells
markdown是一种简介的标记语言,使用起来非常简单,使用范围非常广泛,所以notebook document也支持markdown的语法。
先看一个markdown cell的例子:
#%% md
```python
$ python
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 5
>>> print(a)
5
```
markdown中的语法在notebook中都是可以用的。
还支持标准的LaTeX 和 AMS-LaTeX语法。
raw cells
原始单元格提供了一个可以直接写入输出的位置。 notebook不会对原始单元格中的内容进行计算。
以模块的形式导入Jupyter Notebooks
有时候我们希望以模块的形式导入Jupyter Notebooks,但是可惜的是,Jupyter Notebooks并不是一个标准的python程序,不过Python提供了一些钩子程序,让我们能够方便的进行导入。
首先,我们需要导入一些基本的API :
import io, os, sys, types
from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell
接下来需要注册NotebookFinder到sys.meta_path:
sys.meta_path.append(NotebookFinder())
这个NotebookFinder就是定义的钩子。
我们看下NotebookFinder的定义:
class NotebookFinder(object):
"""Module finder that locates Jupyter Notebooks"""
def __init__(self):
self.loaders = {}
def find_module(self, fullname, path=None):
nb_path = find_notebook(fullname, path)
if not nb_path:
return
key = path
if path:
# lists aren't hashable
key = os.path.sep.join(path)
if key not in self.loaders:
self.loaders[key] = NotebookLoader(path)
return self.loaders[key]
里面使用了两个重要的方法,find_notebook用来找到notebook,和NotebookLoader,用来加载notebook。
看下find_notebook的定义:
def find_notebook(fullname, path=None):
"""find a notebook, given its fully qualified name and an optional path
This turns "foo.bar" into "foo/bar.ipynb"
and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
does not exist.
"""
name = fullname.rsplit('.', 1)[-1]
if not path:
path = ['']
for d in path:
nb_path = os.path.join(d, name + ".ipynb")
if os.path.isfile(nb_path):
return nb_path
# let import Notebook_Name find "Notebook Name.ipynb"
nb_path = nb_path.replace("_", " ")
if os.path.isfile(nb_path):
return nb_path
看下NotebookLoader的定义:
class NotebookLoader(object):
"""Module Loader for Jupyter Notebooks"""
def __init__(self, path=None):
self.shell = InteractiveShell.instance()
self.path = path
def load_module(self, fullname):
"""import a notebook as a module"""
path = find_notebook(fullname, self.path)
print ("importing Jupyter notebook from %s" % path)
# load the notebook object
with io.open(path, 'r', encoding='utf-8') as f:
nb = read(f, 4)
# create the module and add it to sys.modules
# if name in sys.modules:
# return sys.modules[name]
mod = types.ModuleType(fullname)
mod.__file__ = path
mod.__loader__ = self
mod.__dict__['get_ipython'] = get_ipython
sys.modules[fullname] = mod
# extra work to ensure that magics that would affect the user_ns
# actually affect the notebook module's ns
save_user_ns = self.shell.user_ns
self.shell.user_ns = mod.__dict__
try:
for cell in nb.cells:
if cell.cell_type == 'code':
# transform the input to executable Python
code = self.shell.input_transformer_manager.transform_cell(cell.source)
# run the code in themodule
exec(code, mod.__dict__)
finally:
self.shell.user_ns = save_user_ns
return mod
有了他们,我们就可以直接import我们自己编写的notebook了。
本文已收录于 http://www.flydean.com/12-jupyter-notebook/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
相关推荐
- selenium(WEB自动化工具)
-
定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...
- 开发利器丨如何使用ELK设计微服务中的日志收集方案?
-
【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...
- 高并发系统设计:应对每秒数万QPS的架构策略
-
当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...
- 2025 年每个 JavaScript 开发者都应该了解的功能
-
大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...
- JavaScript Array 对象
-
Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...
- Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战
-
刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...
- 动力节点最新JavaScript教程(高级篇),深入学习JavaScript
-
JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...
- 一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code
-
当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...
- 「晚安·好梦」努力只能及格,拼命才能优秀
-
欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...
- JavaScript 中 some 与 every 方法的区别是什么?
-
大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...
- 10个高效的Python爬虫框架,你用过几个?
-
小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...
- 12个高效的Python爬虫框架,你用过几个?
-
实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...
- pip3 install pyspider报错问题解决
-
运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...
- PySpider框架的使用
-
PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...
- 「机器学习」神经网络的激活函数、并通过python实现激活函数
-
神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)