傻傻分不清楚的点积与矩阵乘法 Part3
itomcoil 2025-01-10 14:18 26 浏览
作者:Minkyung Kang
译者:知源觅流
原文链接:https://github.com/mkang32/python-basics/blob/master/numpy/dot_vs_multiply_vs_matmul_vs_at.ipynb
3. NumPy数组有哪些可用的功能?
我们的目标是在 NumPy 中找到执行点积或矩阵乘法的最佳方法。我比较了三个不同类别中的五种不同选项:
- 元素乘法(element-wise multiplication):* 或 np.multiply 加上 np.sum
- 点积:np.dot
- 矩阵乘法:np.matmul, @
我们将根据向量/矩阵的维度来探讨不同的情况,并理解每种方法的优缺点(the pros and cons of each method)。要在接下来的部分中运行代码,我们首先需要导入 numpy。
import numpy as np
(1) 元素乘法:*和sum
首先,我们可以尝试将元素乘法作为基本方法来实现点积:将两个向量中的对应元素相乘,然后将所有输出值相加。这种方法的缺点是你需要分别进行乘法和加法运算,导致它比我们稍后将讨论的其他方法慢。
这是一个使用两个1-D数组计算点积的示例。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> a*b
array([ 4, 10, 18])
>>> sum(a*b)
32
>>> np.sum(a*b) #译者添加
32
让我们看看2-D数组矩阵乘法的示例。
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([1, 1, 1])
>>> c*d
array([[1, 2, 3],
[4, 5, 6]])
在这里,二维数组 c 的每一行都被视为矩阵的一个元素,并与第二个数组 d 进行逐元素相乘。如下所示。
如果我们想要的是矩阵乘法的话,结果应该是这样:
因此,为了得到想要的输出,你需要对初始输出应用 np.sum。请注意,你应该传递参数 axis=1,它会对同一行中的元素求和。否则,因为默认值是axis=None,它对数组中的所有元素求和(译者订)。(译者注:axis=0表示跨行(Y轴)的方向,axis=1表示跨列(X轴)的方向)
>>> np.sum(c*d, axis=1)
array([ 6, 15])
译者注:
你可能会问,为什么不用sum了呢?这是因为如果你继续用刚才用过的sum函数,就得不到想要的结果了。
>>> sum(c*d)
array([5, 7, 9])
此时,你可能被sum和np.sum绕晕了。从下面的简介可以看出,sum是Python内置的函数,用于求和,功能有限。np.sum是numpy提供的求和函数,功能相对强大。所以,一般建议用np.sum。
对sum的简介。
sum(iterable, /, start=0)
Return the sum of a 'start' value (default: 0) plus an iterable of numbers
对np.sum的简介。
sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Sum of array elements over a given axis.
(2) 元素乘法:np.multiply和sum
np.multiply 和 * 基本上是一样的。它是NumPy的元素乘法版本,而不是Python的本地运算符。你需要 sum 函数求和才能得到最终的标量输出。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> np.multiply(a, b)
array([ 4, 10, 18])
>>> np.sum(np.multiply(a, b))
32
(3) 点积:np.dot
在Numpy中有一种更优雅和简单的方法来计算点积,它就是np.dot(a, b) 或 a.dot(b)。它可以同时处理元素乘法和求和。简单易用。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> np.dot(a, b)
32
然而,当它是一个更高维度的数组时,你需要小心。如果数组的维度为2-D或更高,请确保第一个数组的列数与第二个数组的行数相匹配。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b)
# ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
为了让上述示例运行,你需要转置第二个数组,以便形状对齐:(1, 3) x (3, 1)。请注意,这将返回形为(1, 1)的数组,这是一个2-D数组。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b.T)
array([[32]])
如果第二个数组是形状为(3,)的1-D数组,那么输出的数组也会是1-D数组。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (3, )
>>> np.dot(a, b)
array([32])
还要注意输入数组的顺序。如果顺序相反,你会得到外积(outer product)而不是内积(inner product)(点积)。(译者注:一个行向量乘以一个列向量称作向量的内积,又叫作点积,结果是一个标量;一个列向量乘以一个行向量称作向量的外积,结果是一个矩阵)
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a.T, b) # (3, 1) x (1, 3)
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
那么np.dot方法也适用于2-D数组×2-D数组吗?现在让我们尝试一个2D x 2D的例子。
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape (2, 3)
d = np.array([[1], [1], [1]]) # shape (3, 1)
>>> np.dot(c, d)
array([[ 6],
[15]])
它起作用了!即使它被称为点积,根据其定义,这表示输入是1-D向量,输出是标量,但它对2-D或更高维度的矩阵也起作用,就像它是矩阵乘法一样。上面例子的计算过程如下所示。
*或np.multiply是不支持这样计算的,所以np.dot绝对是一个改进。那么,我们应该把np.dot用于所有的点积和矩阵乘法吗?
从技术上讲,可以,但并不推荐使用np.dot进行矩阵乘法,因为“点积”这个名称有特定的含义,可能会让读者感到困惑,尤其是数学家!
此外,对于高维矩阵(3-D或更高),不推荐使用 np.dot,因为它的行为与普通矩阵乘法不同。我们将在本文的后面部分讨论这个问题。
因此,np.dot 既适用于点积也适用于矩阵乘法,但仅建议用于点积。
(4) 矩阵乘法:np.matmul
下一个选项是 np.matmul。它专为矩阵乘法而设计,名字也是由此得来(MATrix MULtiplication)。尽管名称说的是矩阵乘法,但它也适用于 1-D 数组,就像 np.dot 一样。下面让我们尝试一下之前测试 np.dot 的例子。可以看出,对于1-D和2-D数组,np.matmul 与 np.dot 的功能是一样的。
# 1D array
a = np.array([1, 2, 3]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (1, 3)
>>> np.matmul(a, b)
32
# 2D array with values in 1 axis
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b.T)
array([[32]])
# 2D arrays
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape (2, 3)
d = np.array([[1], [1], [1]]) # shape (3, 1)
>>> np.dot(c, d)
array([[ 6],
[15]])
太好了!因此,这意味着np.dot和np.matmul都可以完美地用于点积和矩阵乘法。然而,正如我们之前所说,建议使用np.dot进行点积运算,使用np.matmul进行2-D或更高维度的矩阵乘法。
(5 ) 矩阵乘法:@
最后一个选项来了!@是自Python 3.5以来引入的新运算符,其名称来自mATrices。它基本上与 np.matmul 相同,并旨在执行矩阵乘法。但是,如果我们已经有了完美的 np.matmul,为什么还需要新的中缀运算符呢?
向stdlib添加新运算符的主要动机是矩阵乘法是一个非常常见的运算,它应该拥有自己的中缀运算符。例如,运算符 // 远不如矩阵乘法常见,但仍拥有自己的中缀。要了解此添加的背景,请查看PEP 465 (https://www.python.org/dev/peps/pep-0465/)。
# 1D array
a = np.array([1, 2, 3]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (1, 3)
>>> a @ b
32
# 2D array with values in 1 axis
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> a @ b.T
array([[32]])
# 2D arrays
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape: (2, 3)
d = np.array([[1], [1], [1]]) # shape: (3, 1)
>>> c @ d
array([[ 6],
[15]])
因此,@ 的工作原理和 np.matmul 完全一样。但是在 np.matmul 和@ 之间应该使用哪一个呢?尽管这是你的偏好,但在代码中 @ 看起来比np.matmul 更干净。例如,如果你想对三个不同的矩阵 x,y,z 执行矩阵乘法。那么下面是不同的方式:
# `np.matmul` version
np.matmul(np.matmul(x, y), z)
# `@` version
x @ y @ z
如你所见,@ 操作符更为简洁、易读。然而,由于该操作符仅在Python 3.5及以上版本可用,如果你使用的是更早的Python版本,你必须使用np.matmul。
荟萃知识,滋养你我。
相关推荐
- python创建文件夹,轻松搞定,喝咖啡去了
-
最近经常在录视频课程,一个课程下面往往有许多小课,需要分多个文件夹来放视频、PPT和案例,这下可好了,一个一个手工创建,手酸了都做不完。别急,来段PYTHON代码,轻松搞定,喝咖啡去了!import...
- 如何编写第一个Python程序_pycharm写第一个python程序
-
一、第一个python程序[掌握]python:python解释器,将python代码解释成计算机认识的语言pycharm:IDE(集成开发环境),写代码的一个软件,集成了写代码,...
- Python文件怎么打包为exe程序?_python3.8打包成exe文件
-
PyInstaller是一个Python应用程序打包工具,它可以将Python程序打包为单个独立可执行文件。要使用PyInstaller打包Python程序,需要在命令行中使用py...
- 官方的Python环境_python环境版本
-
Python是一种解释型编程开发语言,根据Python语法编写出来的程序,需要经过Python解释器来进行执行。打开Python官网(https://www.python.org),找到下载页面,选择...
- [编程基础] Python配置文件读取库ConfigParser总结
-
PythonConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。文章目录1介绍1.1PythonConfigParser读取文件1.2Python...
- Python打包exe软件,用这个库真的很容易
-
初学Python的人会觉得开发一个exe软件非常复杂,其实不然,从.py到.exe文件的过程很简单。你甚至可以在一天之内用Python开发一个能正常运行的exe软件,因为Python有专门exe打包库...
- 2025 PyInstaller 打包说明(中文指南),python 打包成exe 都在这里
-
点赞标记,明天就能用上这几个技巧!linux运维、shell、python、网络爬虫、数据采集等定定做,请私信。。。PyInstaller打包说明(中文指南)下面按准备→基本使用→常用...
- Python自动化办公应用学习笔记40—文件路径2
-
4.特殊路径操作用户主目录·获取当前用户的主目录路径非常常用:frompathlibimportPathhome_dir=Path.home()#返回当前用户主目录的Path对象...
- Python内置tempfile模块: 生成临时文件和目录详解
-
1.引言在Python开发中,临时文件和目录的创建和管理是一个常见的需求。Python提供了内置模块tempfile,用于生成临时文件和目录。本文将详细介绍tempfile模块的使用方法、原理及相关...
- python代码实现读取文件并生成韦恩图
-
00、背景今天战略解码,有同学用韦恩图展示各个产品线的占比,效果不错。韦恩图(Venndiagram),是在集合论数学分支中,在不太严格的意义下用以表示集合的一种图解。它们用于展示在不同的事物群组之...
- Python技术解放双手,一键搞定海量文件重命名,一周工作量秒搞定
-
摘要:想象一下,周五傍晚,办公室的同事们纷纷准备享受周末,而你,面对着堆积如山的文件,需要将它们的文件名从美国日期格式改为欧洲日期格式,这似乎注定了你将与加班为伍。但别担心,Python自动化办公来...
- Python路径操作的一些基础方法_python路径文件
-
带你走进@机器人时代Discover点击上面蓝色文字,关注我们Python自动化操作文件避开不了路径操作方法,今天我们来学习一下路径操作的一些基础。Pathlib库模块提供的路径操作包括路径的...
- Python爬取下载m3u8加密视频,原来这么简单
-
1.前言爬取视频的时候发现,现在的视频都是经过加密(m3u8),不再是mp4或者avi链接直接在网页显示,都是经过加密形成ts文件分段进行播放。今天就教大家如果通过python爬取下载m3u8加密视频...
- 探秘 shutil:Python 高级文件操作的得力助手
-
在Python的标准库中,shutil模块犹如一位技艺精湛的工匠,为我们处理文件和目录提供了一系列高级操作功能。无论是文件的复制、移动、删除,还是归档与解压缩,shutil都能以简洁高效的方式完成...
- 怎么把 Python + Flet 开发的程序,打包为 exe ?这个方法很简单!
-
前面用Python+Flet开发的“我的计算器v3”,怎么打包为exe文件呢?这样才能分发给他人,直接“双击”运行使用啊!今天我给大家分享一个简单的、可用的,把Flet开发的程序打包为...
- 一周热门
- 最近发表
-
- python创建文件夹,轻松搞定,喝咖啡去了
- 如何编写第一个Python程序_pycharm写第一个python程序
- Python文件怎么打包为exe程序?_python3.8打包成exe文件
- 官方的Python环境_python环境版本
- [编程基础] Python配置文件读取库ConfigParser总结
- Python打包exe软件,用这个库真的很容易
- 2025 PyInstaller 打包说明(中文指南),python 打包成exe 都在这里
- Python自动化办公应用学习笔记40—文件路径2
- Python内置tempfile模块: 生成临时文件和目录详解
- python代码实现读取文件并生成韦恩图
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)