在不平衡数据上使用AUPRC替代ROC-AUC
itomcoil 2025-05-08 18:59 17 浏览
ROC曲线和曲线下面积AUC被广泛用于评估二元分类器的性能。但是有时,基于精确召回曲线下面积 (AUPRC) 的测量来评估不平衡数据的分类却更为合适。
本文将详细比较这两种测量方法,并说明在AUPRC数据不平衡的情况下衡量性能时的优势
预备知识——计算曲线
我假设您熟悉准确率和召回率以及混淆矩阵的元素(TP、FN、FP、TN)这些基本知识。如果你不熟悉可以搜索我们以前的文章。
现在,让我们快速回顾一下 ROC 曲线和 PRC 的计算。
假设我们有一个二元分类器来预测概率。给定一个新的例子,它输出正类的概率。我们取一个包含 3 个正例和 2 个负例的测试集,计算分类器的预测概率——在下图中按降序对它们进行排序。在相邻的预测之间,放置一个阈值并计算相应的评估度量,TPR(相当于Recall)、FPR和Precision。每个阈值代表一个二元分类器,其预测对其上方的点为正,对其下方的点为负——评估度量是针对该分类器计算的。
图 1:在给定概率和基本事实的情况下,计算 ROC 曲线和 PRC。 这些点按正类概率排序(最高概率在顶部),绿色和红色分别代表正标签或负标签。
我们可以绘制 ROC 曲线和 PRC:
图 2:根据图 1 中描述的数据绘制 ROC 曲线和 PRC。
计算每条曲线下的面积很简单——这些面积如图 2 所示。AUPRC 也称为平均精度 (AP),这是一个来自信息检索领域的术语(稍后会详细介绍)。
在 sklearn 中,我们可以使用
sklearn.metrics.roc_auc_score 和
sklearn.metrics.average_precision_score。
比较 ROC-AUC 和 AUPRC
让我们直接跳到结果,然后讨论实验。
在图 3 中(下图),我们看到两个强大的模型(高 AUC),它们的 AUC 分数差异很小,橙色模型略好一些。
图 3:两个看似相似的模型,其中橙色的模型(“其他模型”)显示出轻微的优势。
然而,在图 4 中(下图),情况完全不同——蓝色模型要强得多。
图 4:两种模型,其中蓝色具有显着优势。
这是为什么呢? 在回答这些问题之前,让我们描述一下我们的实验。
这里的关键是类标签的分布:
- 20个正例
- 2000个负例
这是一个严重的不平衡的数据集。我们的两个模型是使用这些数据进行的预测。 第一个模型在其前 20 个预测中找到 80% 的正确值·,第二 个模型在其前 60 个预测中找到 80% 的正确值·,如下图 5 所示。其余的正确预测平均分布在 剩下的样本中。
图 5:图 3 和图 4 中考虑的模型的前 100 个预测。
换句话说,模型之间的区别在于它们发现正确值的速度有多“快”。 让我们看看为什么这是一个重要的属性,以及为什么 ROC-AUC 无法捕捉到它。
解释差异
ROC 曲线的 x 轴是 FPR。在给定不平衡数据的情况下,与召回率的变化相比,FPR 的变化是缓慢的。这个因素导致了上面差异的产生。
在解释之前,我们要强调的是这里是不平衡的数据集。查看 100 个示例后考虑 FPR,可能会看到最多 100 最少 80 个 的负例(误报),因此 FPR 在区间 [0.04, 0.05] 内。相比之下,我们的模型在 100 个示例中已经实现了 80% 的召回率,召回率几乎没有提高空间,这会导致 AUC 很高。
另一方面,对于PRC来说,获得误报会产生显着影响,因为每次我们看到一个误报时,精度都会大大降低。因此,“其他模型”表现不佳。但是为什么这里使用精度呢?
对于欺诈检测、疾病识别和YouTube视频推荐等任务。它们有着类似的数据不平衡的本质,因为正样本很少。如果我们模型的用户能更快地找到他们需要结果就能节省很多时间。也就是说,正样本的分数是关键。而AUPRC正好捕获了这一需求,而ROC-AUC没有做到这一点。
ROC-AUC 具有很好的概率解释([2] 中提到了其他等效解释,[4] 或 [5] 中提供了证明)。
ROC-AUC 是“均匀抽取的随机正例比均匀抽取的随机负例得分更高的概率”。
对于上述严重的数据不平衡的数据集,当我们统一绘制一个随机负样本时,因为数据的不平衡,负样本更容易收集,所以我们无法确认这个负样本的有效性,但是得分确很高。但是当我们统一绘制一个随机正样本时,这个分数对我们很重要,但是分数却很低,即上述概率会很高。
对于不平衡的数据我们高兴取得是,正例(数据量少的)是如何得分的而不是负例(数据量大的),ROC-AUC 不区分这些,但 AUPRC 却很敏感。
对不平衡数据的分类可能被视为一个积极的检索任务(例如,Web 文档检索),在这种情况下我们只关心来自我们的分类器(或排名器)的前 K 个预测。测量 top-K 预测通常使用平均精度 (AUPRC) 来完成,因为它是评估通用检索系统的最先进的测量方法 [3]。因此如果你发现你的不平衡任务类似于检索任务,强烈建议考虑 AUPRC。
总结
尽管 ROC-AUC 包含了许多有用的评估信息,但它并不是一个万能的衡量标准。 我们使用 ROC-AUC 的概率解释进行了实验来支持这一主张并提供了理论依据。 AUPRC 在处理数据不平衡时可以为我们提供更多信息。
总体而言,ROC 在评估通用分类时很有用,而 AUPRC 在对罕见事件进行分类时是更好的方法。
如果你对本文的计算感兴趣,请看作者提供的源代码:
github/1danielr/rocauc-auprc
作者:Daniel Rosenberg
相关推荐
- 最强聚类模型,层次聚类 !!_层次聚类的优缺点
-
哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...
- python决策树用于分类和回归问题实际应用案例
-
决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...
- Python教程(四十五):推荐系统-个性化推荐算法
-
今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...
- 简单学Python——NumPy库7——排序和去重
-
NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...
- PyTorch实战:TorchVision目标检测模型微调完
-
PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...
- C4.5算法解释_简述c4.5算法的基本思想
-
C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...
- Python中的数据聚类及可视化分析实践
-
探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...
- 用Python来统计大乐透号码的概率分布
-
用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...
- python:支持向量机监督学习算法用于二分类和多分类问题示例
-
监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...
- 25个例子学会Pandas Groupby 操作
-
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...
- 数据挖掘流程_数据挖掘流程主要有哪些步骤
-
数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...
- 使用Python寻找图像最常见的颜色_python 以图找图
-
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...
- 财务预算分析全网最佳实践:从每月分析到每天分析
-
原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...
- 常用数据工具去重方法_数据去重公式
-
在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...
- Python教程(四十):PyTorch深度学习-动态计算图
-
今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)