百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

在不平衡数据上使用AUPRC替代ROC-AUC

itomcoil 2025-05-08 18:59 4 浏览

ROC曲线和曲线下面积AUC被广泛用于评估二元分类器的性能。但是有时,基于精确召回曲线下面积 (AUPRC) 的测量来评估不平衡数据的分类却更为合适。

本文将详细比较这两种测量方法,并说明在AUPRC数据不平衡的情况下衡量性能时的优势

预备知识——计算曲线

我假设您熟悉准确率和召回率以及混淆矩阵的元素(TP、FN、FP、TN)这些基本知识。如果你不熟悉可以搜索我们以前的文章。

现在,让我们快速回顾一下 ROC 曲线和 PRC 的计算。

假设我们有一个二元分类器来预测概率。给定一个新的例子,它输出正类的概率。我们取一个包含 3 个正例和 2 个负例的测试集,计算分类器的预测概率——在下图中按降序对它们进行排序。在相邻的预测之间,放置一个阈值并计算相应的评估度量,TPR(相当于Recall)、FPR和Precision。每个阈值代表一个二元分类器,其预测对其上方的点为正,对其下方的点为负——评估度量是针对该分类器计算的。

图 1:在给定概率和基本事实的情况下,计算 ROC 曲线和 PRC。 这些点按正类概率排序(最高概率在顶部),绿色和红色分别代表正标签或负标签。

我们可以绘制 ROC 曲线和 PRC:

图 2:根据图 1 中描述的数据绘制 ROC 曲线和 PRC。

计算每条曲线下的面积很简单——这些面积如图 2 所示。AUPRC 也称为平均精度 (AP),这是一个来自信息检索领域的术语(稍后会详细介绍)。

在 sklearn 中,我们可以使用
sklearn.metrics.roc_auc_score 和
sklearn.metrics.average_precision_score。

比较 ROC-AUC 和 AUPRC

让我们直接跳到结果,然后讨论实验。

在图 3 中(下图),我们看到两个强大的模型(高 AUC),它们的 AUC 分数差异很小,橙色模型略好一些。

图 3:两个看似相似的模型,其中橙色的模型(“其他模型”)显示出轻微的优势。

然而,在图 4 中(下图),情况完全不同——蓝色模型要强得多。

图 4:两种模型,其中蓝色具有显着优势。

这是为什么呢? 在回答这些问题之前,让我们描述一下我们的实验。

这里的关键是类标签的分布:

  1. 20个正例
  2. 2000个负例

这是一个严重的不平衡的数据集。我们的两个模型是使用这些数据进行的预测。 第一个模型在其前 20 个预测中找到 80% 的正确值·,第二 个模型在其前 60 个预测中找到 80% 的正确值·,如下图 5 所示。其余的正确预测平均分布在 剩下的样本中。

图 5:图 3 和图 4 中考虑的模型的前 100 个预测。

换句话说,模型之间的区别在于它们发现正确值的速度有多“快”。 让我们看看为什么这是一个重要的属性,以及为什么 ROC-AUC 无法捕捉到它。

解释差异

ROC 曲线的 x 轴是 FPR。在给定不平衡数据的情况下,与召回率的变化相比,FPR 的变化是缓慢的。这个因素导致了上面差异的产生。

在解释之前,我们要强调的是这里是不平衡的数据集。查看 100 个示例后考虑 FPR,可能会看到最多 100 最少 80 个 的负例(误报),因此 FPR 在区间 [0.04, 0.05] 内。相比之下,我们的模型在 100 个示例中已经实现了 80% 的召回率,召回率几乎没有提高空间,这会导致 AUC 很高。

另一方面,对于PRC来说,获得误报会产生显着影响,因为每次我们看到一个误报时,精度都会大大降低。因此,“其他模型”表现不佳。但是为什么这里使用精度呢?

对于欺诈检测、疾病识别和YouTube视频推荐等任务。它们有着类似的数据不平衡的本质,因为正样本很少。如果我们模型的用户能更快地找到他们需要结果就能节省很多时间。也就是说,正样本的分数是关键。而AUPRC正好捕获了这一需求,而ROC-AUC没有做到这一点。

ROC-AUC 具有很好的概率解释([2] 中提到了其他等效解释,[4] 或 [5] 中提供了证明)。

ROC-AUC 是“均匀抽取的随机正例比均匀抽取的随机负例得分更高的概率”。

对于上述严重的数据不平衡的数据集,当我们统一绘制一个随机负样本时,因为数据的不平衡,负样本更容易收集,所以我们无法确认这个负样本的有效性,但是得分确很高。但是当我们统一绘制一个随机正样本时,这个分数对我们很重要,但是分数却很低,即上述概率会很高。

对于不平衡的数据我们高兴取得是,正例(数据量少的)是如何得分的而不是负例(数据量大的),ROC-AUC 不区分这些,但 AUPRC 却很敏感。

对不平衡数据的分类可能被视为一个积极的检索任务(例如,Web 文档检索),在这种情况下我们只关心来自我们的分类器(或排名器)的前 K 个预测。测量 top-K 预测通常使用平均精度 (AUPRC) 来完成,因为它是评估通用检索系统的最先进的测量方法 [3]。因此如果你发现你的不平衡任务类似于检索任务,强烈建议考虑 AUPRC。

总结

尽管 ROC-AUC 包含了许多有用的评估信息,但它并不是一个万能的衡量标准。 我们使用 ROC-AUC 的概率解释进行了实验来支持这一主张并提供了理论依据。 AUPRC 在处理数据不平衡时可以为我们提供更多信息。

总体而言,ROC 在评估通用分类时很有用,而 AUPRC 在对罕见事件进行分类时是更好的方法。

如果你对本文的计算感兴趣,请看作者提供的源代码:

github/1danielr/rocauc-auprc

作者:Daniel Rosenberg

相关推荐

Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...

Excel超强数据拆分函数TEXTSPLIT,从入门到精通!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...

看完就会用的C++17特性总结(c++11常用新特性)

作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...

plsql字符串分割浅谈(plsql字符集设置)

工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...

javascript如何分割字符串(javascript切割字符串)

javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...

TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)

在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...

Python字符串split()方法使用技巧

在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...

go语言中字符串常用的系统函数(golang 字符串)

最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...

无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)

今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...

Python之文本解析:字符串格式化的逆操作?

引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...

忘记【分列】吧,TEXTSPLIT拆分文本好用100倍

函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...

Excel365版本新函数TEXTSPLIT,专攻文本拆分

Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...

站长在线Python精讲使用正则表达式的split()方法分割字符串详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...

Java中字符串分割的方法(java字符串切割方法)

技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...

因为一个函数strtok踩坑,我被老工程师无情嘲笑了

在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...